0

I have the following dataframes:

NUMS = ['1', '2', '3', '4', '5']
LETTERS = ['a', 'b', 'c']
df1 = pd.DataFrame(index=NUMS, columns=LETTERS)
    a    b    c
1  NaN  NaN  NaN
2  NaN  NaN  NaN
3  NaN  NaN  NaN
4  NaN  NaN  NaN
5  NaN  NaN  NaN

df2 = pd.DataFrame([['tom', 10], ['nick', 15], ['james', 14]],
                   index=LETTERS,
                   columns=['col', 'col2'])
    col  col2
a    tom    10
b   nick    15
c  james    14

I'm trying to update df1 with df2 so that if the column matches the index from df2, all rows are updated with col2:

    a    b    c
1   10   15  14
2   10   15  14
3   10   15  14
4   10   15  14
5   10   15  14

I've tried df1.update(df2['col2']), but df1 does not update.

I've also tried df1.apply(lambda x: df2['col2'].loc[x]), but I'm getting the following error:

KeyError: "None of [Float64Index([nan, nan, nan, nan, nan], dtype='float64')] are in the [index]"

Thank you!

2 Answers 2

1

try this:

df1.fillna(df2.col2)
>>>
    a   b   c
1   10  15  14
2   10  15  14
3   10  15  14
4   10  15  14
5   10  15  14
Sign up to request clarification or add additional context in comments.

Comments

0

Try this:

for column in df1.columns:
    df1.loc[:, column] = df2.at[column, 'col2']

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.