There are two problems here:
- You want to wait for the work done in the coroutine that
viewModel.inc() launches internally.
- Ideally, the 100ms delay should be fast-forwarded during tests so that it doesn't actually take 100ms to execute.
Let's start with problem #2 first: for this, you need to be able to modify MyViewModel (but not inc), and change the class so that instead of using a hardcoded Dispatchers.IO, it receives a CoroutineContext as a parameter. With this, you could pass in a TestDispatcher in tests, which would use virtual time to fast-forward the delay. You can see this pattern described in the Injecting TestDispatchers section of the Android docs.
class MyViewModel(coroutineContext: CoroutineContext) : Incrementer {
private val scope = CoroutineScope(coroutineContext)
private val _number = MutableStateFlow(0)
fun getNumber(): StateFlow<Int> = _number.asStateFlow()
override fun inc() {
scope.launch {
delay(100)
_number.tryEmit(1)
}
}
}
Here, I've also done some minor cleanup:
- Made
MyViewModel contain a CoroutineScope instead of implementing the interface, which is an officially recommended practice
- Removed the
coroutineContext parameter passed to launch, as it doesn't do anything in this case - the same context is in the scope anyway, so it'll already be used
For problem #1, waiting for work to complete, you have a few options:
If you've passed in a TestDispatcher, you can manually advance the coroutine created inside inc using testing methods like advanceUntilIdle. This is not ideal, because you're relying on implementation details a lot, and it's something you couldn't do in production. But it'll work if you can't use the nicer solution below.
viewModel.inc()
advanceUntilIdle() // Returns when all pending coroutines are done
The proper solution would be for inc to let its callers know when it's done performing its work. You could make it a suspending method instead of launching a new coroutine internally, but you stated that you can't modify the method to make it suspending. An alternative - if you're able to make this change - would be to create the new coroutine in inc using the async builder, returning the Deferred object that that creates, and then await()-ing at the call site.
override fun inc(): Deferred<Unit> {
scope.async {
delay(100)
_number.tryEmit(1)
}
}
// In the test...
viewModel.inc().await()
If you're not able to modify either the method or the class, there's no way to avoid the delay() call causing a real 100ms delay. In this case, you can force your test to wait for that amount of time before proceeding. A regular delay() within runTest would be fast-forwarded thanks to it using a TestDispatcher for the coroutine it creates, but you can get away with one of these solutions:
// delay() on a different dispatcher
viewModel.inc()
withContext(Dispatchers.Default) { delay(100) }
// Use blocking sleep
viewModel.inc()
Thread.sleep(100)
For some final notes about the test code:
- Since you're doing
Dispatchers.setMain, you don't need to pass in testScheduler into the TestDispatchers you create. They'll grab the scheduler from Main automatically if they find a TestDispatcher there, as described in its docs.
- Instead of creating a new scope to pass in to
launchIn, you could simply pass in this, the receiver of runTest, which points to a TestScope.
inc()doesn't wait, sojoin()doesn't as well and then it goes straight to the assert. But honestly, I have problems understanding what you try to achieve here. You try to wait for the producer to finish, but verify the results on the consumer side. Even if producer emitted an item, we don't have guarantees consumer already consumed it. I think you should wait for the consumer, not producer, for example by assuming there are exactly 2 items to consume or by closing the flow after emitting.inc()until it finishes then well, userunBlocking()inside it instead oflaunch(). You use a lot of launches in your code, that makes pretty hard to wait for anything. Still, I believe even if you wait forinc()to finish, you aren't guaranteed that collector/consumer running concurrently already consumed the item. Even if this is deterministic when running inside the simulated test environment, it may fail in the real application.