2

reproducible data

import pandas as pd
import numpy as np

cols1=['b','a','c','a']
data1=[0,0,0,0]
df1=pd.DataFrame([data1], columns= cols1)
df1

cols2=['b','a', 'd', 'a', 'e','f']
data2=[1,1,1,1,1,1]
df2=pd.DataFrame([data2], columns= cols2)
df2

result I want

data = { "b": [0, 1],
        "b a" : [0, 1],
        "c" : [0, np.NaN],
        "c a" : [0, np.NaN],
       "d" : [np.NaN, 1],
       "d a" : [np.NaN, 1],
       "e" : [np.NaN, 1],
       "f" : [np.NaN, 1]}
pd.DataFrame(data)

If df have duplicate column name "a", I cannot use "concat" function.

Any good way to deal with duplicate column names?

If there is a "b" before "a", I want to change the corresponding a to "b a".

1
  • 1
    This is very much a non-typical use-case. We can hack together some Frankenstein solution but it wouldn't benefit very many people. Commented Jun 23, 2022 at 5:07

1 Answer 1

5

It is not standard deduplicated columns names, this working if not consecutive duplicates like a,b,b,b or b,a,b,a columns names:

s1 = df1.columns.to_series()
df1.columns = [f'{b} {a}' if c else a for a, b, c in zip(df1.columns, s1.shift(fill_value=''), s1.duplicated(keep=False))]


s2 = df2.columns.to_series()
df2.columns = [f'{b} {a}' if c else a for a, b, c in zip(df2.columns, s2.shift(fill_value=''), s2.duplicated(keep=False))]


df = pd.concat([df1, df2])
print (df)
   b  b a    c  c a    d  d a    e    f
0  0    0  0.0  0.0  NaN  NaN  NaN  NaN
0  1    1  NaN  NaN  1.0  1.0  1.0  1.0

Obviously deduplicate columns names is done by positions, here is a duplicated, so added 1. But output is different:

s1 = df1.columns.to_series()
df1.columns = s1.str.cat(s1.groupby(s1).cumcount().astype(str), sep=' ').str.replace(' 0','', regex=True)

s2 = df2.columns.to_series()
df2.columns = s2.str.cat(s2.groupby(s2).cumcount().astype(str), sep=' ').str.replace(' 0','', regex=True)


df = pd.concat([df1, df2], ignore_index=True)
print (df)
   b  a    c  a 1    d    e    f
0  0  0  0.0    0  NaN  NaN  NaN
1  1  1  NaN    1  1.0  1.0  1.0
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.