8

I tried parsing this huge XML document using XML minidom. While it worked fine on a sample file, it choked the system when trying to process the real file (about 400 MB).

I tried adapting code (it processes data in a streaming fashion rather than in-memory load at once) from codereview for my xml file, I am having trouble isolating the datasets due to the nested nature of the elements. I worked on simple XML files before but not on a memory intensive task like this.

Is this the right approach? How do I associate the Inventory and Publisher IDs to each book? That is how I am planning to relate the 2 tables eventually.

Any feedback is much appreciated.

book.xml

<BookDatabase>
    <BookHeader>
        <Name>BookData</Name>
        <BookUniverse>All</BookUniverse>
        <AsOfDate>2010-05-02</AsOfDate>
        <Version>1.1</Version>
    </BookHeader>

    <InventoryBody>
        <Inventory ID="12">
            <PublisherClass ID="34">
                <Publisher>
                    <PublisherDetails>
                        <Name>Microsoft Press</Name>
                        <Type>Tech</Type>
                        <ID>7462</ID>
                    </PublisherDetails>
                </Publisher>
            </PublisherClass>
            <BookList>
                <Listing>
                    <BookListSummary>
                        <Date>2009-01-30</Date>
                    </BookListSummary>
                    <Book>
                        <BookDetail ID="67">
                            <BookName>Code Complete 2</BookName>
                            <Author>Steve McConnell</Author>
                            <Pages>960</Pages>
                            <ISBN>0735619670</ISBN>
                        </BookDetail>
                        <BookDetail ID="78">
                            <BookName>Application Architecture Guide 2</BookName>
                            <Author>Microsoft Team</Author>
                            <Pages>496</Pages>
                            <ISBN>073562710X</ISBN>
                        </BookDetail>
                    </Book>
                </Listing>
            </BookList>
        </Inventory>
        <Inventory ID="64">
            <PublisherClass ID="154">
                <Publisher>
                    <PublisherDetails>
                        <Name>O'Reilly Media</Name>
                        <Type>Tech</Type>
                        <ID>7484</ID>
                    </PublisherDetails>
                </Publisher>
            </PublisherClass>
            <BookList>
                <Listing>
                    <BookListSummary>
                        <Date>2009-03-30</Date>
                    </BookListSummary>
                    <Book>
                        <BookDetail ID="98">
                            <BookName>Head First Design Patterns</BookName>
                            <Author>Kathy Sierra</Author>
                            <Pages>688</Pages>
                            <ISBN>0596007124</ISBN>
                        </BookDetail>
                    </Book>
                </Listing>
            </BookList>
        </Inventory>
    </InventoryBody>
</BookDatabase>

Python Code :

import sys
import os
#import MySQLdb
from lxml import etree

CATEGORIES = set(['BookHeader', 'Inventory', 'PublisherClass', 'PublisherDetails', 'BookDetail'])
SKIP_CATEGORIES = set(['BookHeader'])
DATA_ITEMS = ["Name", "Type", "ID", "BookName", "Author", "Pages", "ISBN"]

def clear_element(element):
    element.clear()
    while element.getprevious() is not None:
        del element.getparent()[0]

def extract_book_elements(context):
    for event, element in context:
         if element.tag in CATEGORIES:
               yield element
               clear_element(element)                 

def fast_iter2(context):
    for bookCounter, element in enumerate(extract_book_elements(context)):
            books = [book.text for book in element.findall("BookDetail")]
            bookdetail = {
                'element' : element.tag,
                'ID' : element.get('ID')
            }
            for data_item in DATA_ITEMS:
                data = element.find(data_item)
                if data is not None:
                    bookdetail[data_item] = data

            if bookdetail['element'] not in SKIP_CATEGORIES:
                #populate_database(bookdetail, books, cursor)
                print bookdetail, books

            print "========>", bookCounter , "<======="

def main():
        #cursor = connectToDatabase()
        #cursor.execute("""SET NAMES utf8""")

        context = etree.iterparse("book.xml", events=("start", "end"))
        #fast_iter(context, cursor)
        fast_iter2(context)

        #cursor.close()


if __name__ == '__main__':
    main()            

Python Output :

$ python lxmletree_book.py 
========> 0 <=======
========> 1 <=======
{'ID': '12', 'element': 'Inventory'} []
========> 2 <=======
{'ID': '34', 'element': 'PublisherClass'} []
========> 3 <=======
{'Name': <Element Name at 0x105140af0>, 'Type': <Element Type at 0x105140b40>, 'ID': <Element ID at 0x105140b90>, 'element': 'PublisherDetails'} []
========> 4 <=======
{'ID': None, 'element': 'PublisherDetails'} []
========> 5 <=======
{'ID': None, 'element': 'PublisherClass'} []
========> 6 <=======
{'ISBN': <Element ISBN at 0x105140eb0>, 'Name': <Element Name at 0x105140dc0>, 'Author': <Element Author at 0x105140e10>, 'ID': '67', 'element': 'BookDetail', 'Pages': <Element Pages at 0x105140e60>} []
========> 7 <=======
{'ID': None, 'element': 'BookDetail'} []
========> 8 <=======
{'ISBN': <Element ISBN at 0x1051460a0>, 'Name': <Element Name at 0x105140f50>, 'Author': <Element Author at 0x105140fa0>, 'ID': '78', 'element': 'BookDetail', 'Pages': <Element Pages at 0x105146050>} []
========> 9 <=======
{'ID': None, 'element': 'BookDetail'} []
========> 10 <=======
{'ID': None, 'element': 'Inventory'} []
========> 11 <=======
{'ID': '64', 'element': 'Inventory'} []
========> 12 <=======
{'ID': '154', 'element': 'PublisherClass'} []
========> 13 <=======
{'Name': <Element Name at 0x105146230>, 'Type': <Element Type at 0x105146280>, 'ID': <Element ID at 0x1051462d0>, 'element': 'PublisherDetails'} []
========> 14 <=======
{'ID': None, 'element': 'PublisherDetails'} []
========> 15 <=======
{'ID': None, 'element': 'PublisherClass'} []
========> 16 <=======
{'ISBN': <Element ISBN at 0x1051465f0>, 'Name': <Element Name at 0x105146500>, 'Author': <Element Author at 0x105146550>, 'ID': '98', 'element': 'BookDetail', 'Pages': <Element Pages at 0x1051465a0>} []
========> 17 <=======
{'ID': None, 'element': 'BookDetail'} []
========> 18 <=======
{'ID': None, 'element': 'Inventory'} []
========> 19 <=======

Desired Output (eventually stored in MySQL - for now a List in Python):

Publishers
InventoryID PublisherClassID Name            Type ID
12          34               Microsoft Press Tech 7462
64          154              O'Reilly Media  Tech 7484

Books
PublisherID BookDetailID Name                              Author           Pages ISBN
7462        67           Code Complete 2                   Steve McConnell  960   0735619670
7462        78           Application Architecture Guide 2  Microsoft Team   496   073562710X
7484        98           Head First Design Patterns        Kathy Sierra     688   0596007124
7
  • 4
    You might want to try a stream parser, processing the xml document one element at a time, rather then loading the entire thing into memory and working with the DOM. docs.python.org/library/pyexpat.html Commented Sep 11, 2011 at 18:17
  • Yep, I dumped my DOM code and tried using iterparse instead. This does the task (memory-wise), I am trying to associate each dataset with the IDs for storing in MySQL. Commented Sep 11, 2011 at 18:18
  • Agree with goldsz...also since you are limited in memory you may want to store the relationships to disk. A temporary database should be sufficient. SQLite would probably be the quick solution (slower though). Commented Sep 11, 2011 at 18:35
  • Your logic is going to have to maintain more of the state. You probably want to break up the logic for each of your categories into a different a function. Maintain your object that represents that last PublisherDetails encountered, then each BookDetails encountered is related to that publisher. Commented Sep 11, 2011 at 18:35
  • Thanks Yzmir, I will be storing the data in MySQL eventually. goldsz, if I create a blank list and populate it with the book and publisher data for each context - do you think that is a good idea? Working on a Sunday, trying to get this loaded in MySQL to generate a human readable CSV tomorrow. Looking for a quick fix - I will eventually explore an efficient solution for future. Commented Sep 11, 2011 at 18:41

2 Answers 2

7

You might try something like this:

import MySQLdb
from lxml import etree
import config

def fast_iter(context, func, args=[], kwargs={}):
    # http://www.ibm.com/developerworks/xml/library/x-hiperfparse/
    # Author: Liza Daly    
    for event, elem in context:
        func(elem, *args, **kwargs)
        elem.clear()
        while elem.getprevious() is not None:
            del elem.getparent()[0]
    del context

def extract_paper_elements(element,cursor):
    pub={}        
    pub['InventoryID']=element.attrib['ID']
    try:
        pub['PublisherClassID']=element.xpath('PublisherClass/@ID')[0]
    except IndexError:
        pub['PublisherClassID']=None
    pub['PublisherClassID']=element.xpath('PublisherClass/@ID')[0]
    for key in ('Name','Type','ID'):
        try:
            pub[key]=element.xpath(
                'PublisherClass/Publisher/PublisherDetails/{k}/text()'.format(k=key))[0]
        except IndexError:
            pub[key]=None
    sql='''INSERT INTO Publishers (InventoryID, PublisherClassID, Name, Type, ID)
           VALUES (%s, %s, %s, %s, %s)
        '''
    args=[pub.get(key) for key in
          ('InventoryID', 'PublisherClassID', 'Name', 'Type', 'ID')]
    print(args)
    # cursor.execute(sql,args)
    for bookdetail in element.xpath('descendant::BookList/Listing/Book/BookDetail'):
        pub['BookDetailID']=bookdetail.attrib['ID']
        for key in ('BookName', 'Author', 'Pages', 'ISBN'):
            try:
                pub[key]=bookdetail.xpath('{k}/text()'.format(k=key))[0]
            except IndexError:
                pub[key]=None
        sql='''INSERT INTO Books
               (PublisherID, BookDetailID, Name, Author, Pages, ISBN)
               VALUES (%s, %s, %s, %s, %s, %s)
            '''           
        args=[pub.get(key) for key in
              ('ID', 'BookDetailID', 'BookName', 'Author', 'Pages', 'ISBN')]
        # cursor.execute(sql,args)
        print(args)


def main():
    context = etree.iterparse("book.xml", events=("end",), tag='Inventory')
    connection=MySQLdb.connect(
        host=config.HOST,user=config.USER,
        passwd=config.PASS,db=config.MYDB)
    cursor=connection.cursor()

    fast_iter(context,extract_paper_elements,args=(cursor,))

    cursor.close()
    connection.commit()
    connection.close()

if __name__ == '__main__':
    main()
  1. Don't use fast_iter2. The original fast_iter separates the useful utility from the specific processing function (extract_paper_elements). fast_iter2 mixes the two together leaving you with no repeatable code.
  2. If you set the tag parameter in etree.iterparse("book.xml", events=("end",), tag='Inventory') then your processing function extract_paper_elements will only see Inventory elements.
  3. Given an Inventory element you can use the xpath method to burrow down and scrape the desired data.
  4. args and kwargs parameters were added to fast_iter so cursor can be passed to extract_paper_elements.
Sign up to request clarification or add additional context in comments.

22 Comments

Thanks for getting me back on fast_iter. Limiting to Inventory tag makes so much sense too! Will let you know how it goes shortly...
Awesome, it works great! Thank you so much for the explanation as well, I am sure newbies like me will benefit.
Oops, looks like my happiness is short-lived :( I got a segmentation fault error : Stack trace @ pastebin.com/UyKuRdg4 It happened on both my Mac and CentOS machines. Python 2.7, help!
@ThinkCode: Does the problem happen near the beginning of the run, or sometime in the middle? I couldn't identify the problem from the stack trace. Do you think it is a memory issue?
It happens after it processes 2 inventories (each with about 100 books). Tried it on a different machine, same problem.
|
1

So if you want something quick and dirty you need to simply remember the last publisher parsed and assign it to each bookdetail until the next PublisherDetails is found. Add something like this to your fast_iter2 function after you extract the bookdetail:

        if bookdetail['element'] == "PublisherDetails" and bookdetail['ID'] is not None:
            CurrentPublisher = bookdetail
        if bookdetail['element'] == "BookDetail":
            bookdetail['PublisherID'] = CurrentPublisher['ID'].text

1 Comment

Thanks goldsz, was working on this solution when unutbu led me to fast_iter rather than fast_iter2. Thanks a lot!

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.