0

I want to delete rows in pandas dataframe by uncertain number of columns' value.

I create a string which contains python code, then use exec() to execute it. Is there a alternative way without exec() to handle uncertain number of conditions like this but work in pandas?

This is my code:

import pandas as pd


class DelTest:
    def __init__(self, df) -> None:
        self.df = df

    def deleteRows(self, conditions):
        conditions = [f"(self.df['{c['col']}'] == {c['val']})" for c in conditions]
        code = f"self.df = self.df.drop(self.df[{' & '.join(conditions)}].index)"
        exec(code)
        return self.df


# delete if df['value1'] == 0
condition1 = [{'col': 'value1', 'val': 0}]
# delete if df['value1'] == 0 & df['value2'] == 0
condition2 = [{'col': 'value1', 'val': 0}, {'col': 'value2', 'val': 0}]

df = pd.DataFrame(data=[['A', 2, 0],
                        ['B', 5, 1],
                        ['C', 0, 1],
                        ['X', 0, 1],
                        ['X', 0, 0]],
                  columns=['name', 'value1', 'value2'])

print(df)
'''
  name  value1  value2
0    A       2       0
1    B       5       1
2    C       0       1
3    X       0       1
4    X       0       0
'''
print(DelTest(df).deleteRows(condition1))
'''
  name  value1  value2
0    A       2       0
1    B       5       1
'''
print(DelTest(df).deleteRows(condition2))
'''
  name  value1  value2
0    A       2       0
1    B       5       1
2    C       0       1
3    X       0       1
'''

1 Answer 1

1

Let us try with merge

cond = pd.DataFrame(condition2).set_index('col').T
out = df.merge(cond,how='left',indicator = True).query('_merge == "left_only"')
Out[209]: 
  name  value1  value2     _merge
0    A       2       0  left_only
1    B       5       1  left_only
2    C       0       1  left_only
3    X       0       1  left_only
#cond = pd.DataFrame(condition1).set_index('col').T
#out = df.merge(cond,how='left',indicator = True).query('_merge == "left_only"')
#Out[210]: 
#  name  value1  value2     _merge
#0    A       2       0  left_only
#1    B       5       1  left_only
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.