There are two issues with your function definition:
- As noted in Shayan's answer and Dan's comment, the array type in Julia is called
Array (capitalized) rather than array. To see:
julia> array
ERROR: UndefVarError: array not defined
julia> Array
Array
- Empty square brackets are used to instantiate an array, and if preceded by a type, they specifically instantiate an array holding objects of that type:
julia> x = Int[]
Int64[]
julia> push!(x, 3); x
1-element Vector{Int64}:
3
julia> push!(x, "test"); x
ERROR: MethodError: Cannot `convert` an object of type String to an object of type Int64
Thus when you do Array[] you are actually instantiating an empty vector of Arrays:
julia> y = Array[]
Array[]
julia> push!(y, rand(2)); y
1-element Vector{Array}:
[0.10298669573927233, 0.04327245960128345]
Now it is important to note that there's a difference between a type and an object of a type, and if you want to restrict the types of input arguments to your functions, you want to do this by specifying the type that the function should accept, not an instance of this type. To see this, consider what would happen if you had fixed your array typo and passed an Array[] instead:
julia> f(x::Array[])
ERROR: TypeError: in typeassert, expected Type, got a value of type Vector{Array}
Here Julia complains that you have provided a value of the type Vector{Array} in the type annotation, when I should have provided a type.
More generally though, you should think about why you are adding any type restrictions to your functions. If you define a function without any input types, Julia will still compile a method instance specialised for the type of input provided when first call the function, and therefore generate (most of the time) machine code that is optimal with respect to the specific types passed.
That is, there is no difference between
number_of_zeros(lst::Vector{Int64})
and
number_of_zeros(lst)
in terms of runtime performance when the second definition is called with an argument of type Vector{Int64}. Some people still like type annotations as a form of error check, but you also need to consider that adding type annotations makes your methods less generic and will often restrict you from using them in combination with code other people have written. The most common example of this are Julia's excellent autodiff capabilities - they rely on running your code with dual numbers, which are a specific numerical type enabling automatic differentiation. If you strictly type your functions as suggested (Vector{Int}) you preclude your functions from being automatically differentiated in this way.
Finally just a note of caution about the Array type - Julia's array's can be multidimensional, which means that Array{Int} is not a concrete type:
julia> isconcretetype(Array{Int})
false
to make it concrete, the dimensionality of the array has to be provided:
julia> isconcretetype(Array{Int, 1})
true
::array[]not needed in function definition. Justfunction number_of_zeros(lst)enough. Arrays in julia can be of any dimension, so lists are usually called vectors, and writtenVector{Int}in this case.