0

I am trying to find the length (number of digits) in the maximum value of a data frame. Why? Then I know how much y-axis ticks will extend when plotting this data, and accordingly, I can adjust the plot's left border.

My code:

df = 
datetime                 A        B       C
2022-08-23 06:12:00     1.91    98.35   1.88
2022-08-23 06:13:00     1.92    92.04   1.77
2022-08-23 06:14:00     132.14  81.64   1.75

# maximum length element
max_len = df.round(2).dropna().astype('str').applymap(lambda x:len(x)).max().max()
print(max_len)
6

df.plot(figsize=(5,3),
        use_index=True,
        colormap=cm.get_cmap('Set1'),
        alpha=0.5)
# plot border for saving
left_border = (max_len/100)+0.05
plt.subplots_adjust(left=left_border, right=0.90, top=0.95, bottom=0.25)
plt.savefig(save_dir+plot_df.index[i]+'.jpg',dpi=500)
plt.show()

is there a better way to find the maximum length of the element?

2
  • len(str(df.round(2).max().max())) Commented Dec 23, 2022 at 4:39
  • len(str(np.max(df.to_numpy()))) faster Commented Dec 23, 2022 at 4:41

1 Answer 1

1

You can do this without the lambda, first find the max value in the dataframe, the cast to string and take len:

len(str(df.round(2).max().max()))
# Outputs: 6
%timeit returns: 979 µs ± 17 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

Or

len(str(np.max(df.to_numpy())))
# Outputs: 6
%timeit returns: 9.35 µs ± 136 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)

Compared to your solution:

df.round(2).dropna().astype('str').applymap(lambda x:len(x)).max().max()
6
2.23 ms ± 68.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.