Problem
I am writing a program that reads a set of documents from a corpus (each line is a document). Each document is processed using a function processdocument, assigned a unique ID, and then written to a database. Ideally, we want to do this using several processes. The logic is as follows:
- The main routine creates a new database and sets up some tables.
- The main routine sets up a group of processes/threads that will run a worker function.
- The main routine starts all the processes.
- The main routine reads the corpus, adding documents to a queue.
- Each process's worker function loops, reading a document from a queue, extracting the information from it using
processdocument, and writes the information to a new entry in a table in the database. - The worker loops breaks once the queue is empty and an appropriate flag has been set by the main routine (once there are no more documents to add to the queue).
Question
I'm relatively new to sqlalchemy (and databases in general). I think the code used for setting up the database in the main routine works fine, from what I can tell. Where I'm stuck is I'm not sure exactly what to put into the worker functions for each process to write to the database without clashing with the others.
There's nothing particularly complicated going on: each process gets a unique value to assign to an entry from a multiprocessing.Value object, protected by a Lock. I'm just not sure whether what I should be passing to the worker function (aside from the queue), if anything. Do I pass the sqlalchemy.Engine instance I created in the main routine? The Metadata instance? Do I create a new engine for each process? Is there some other canonical way of doing this? Is there something special I need to keep in mind?
Additional Comments
I'm well aware I could just not bother with the multiprocessing but and do this in a single process, but I will have to write code that has several processes reading for the database later on, so I might as well figure out how to do this now.
Thanks in advance for your help!