What is the right/pythonic way to do math on a few indexed elements in a Pandas Dataframe?

I tried a few ways but they seem awkward and confusing:

df = pd.DataFrame({'x': [1, 2, 3, 4, 5, 6, 7, 9, ]})
df['y'] = df['x'] / 2

print(df)

def printEpr(x):
    print(F"""End Point Rate:
    {epr} dy/dx""")

epr = (df['y'][7] - df['y'][0]) / (df['x'][7] - df['x'][0])
printEpr(epr)

epr = (
    (df.iloc[[-1], [1]].values - df.iloc[[0], [1]].values)
    / (df.iloc[[-1], [0]].values - df.iloc[[1], [0]].values))
printEpr(epr)

#epr = (df['y'] - df.iloc[0, 'y']) / (df.iloc[-1, 'x'] - df.iloc[0, 'x'])
#printEpr(epr)

yind = df.columns.get_loc('y')
xind = df.columns.get_loc('x')
epr = (df.iloc[-1, yind] - df.iloc[0, yind]) / (df.iloc[-1, xind] - df.iloc[0, xind])
printEpr(epr)

#epr = (df.iloc[-1, 'y'] - df.iloc[0, 'y']) / (df.iloc[-1, 'x'] - df.iloc[0, 'x'])
#printEpr(epr)

With results:

   x    y
0  1  0.5
1  2  1.0
2  3  1.5
3  4  2.0
4  5  2.5
5  6  3.0
6  7  3.5
7  9  4.5
End Point Rate:
    0.5 dy/dx
End Point Rate:
    [[0.57142857]] dy/dx
End Point Rate:
    0.5 dy/dx

3 Replies 3

iloc is the standard way to access rows/columns by position.

Avoid using df[...] chaining like df['y'][7], which triggers a copy and it may show SettingWithCopyWarning in some complex cases.

No need to wrap in .values or nested lists — that’s for array slicing and not scalar math.

You can always switch to .loc if you prefer label-based access instead of positional.

import pandas as pd

df = pd.DataFrame({'x': [1, 2, 3, 4, 5, 6, 7, 9]})
df['y'] = df['x'] / 2

def printEpr(epr):
    print(f"End Point Rate:\n    {epr:.3f} dy/dx")

#using  .iloc with integer positions
epr = (df['y'].iloc[-1] - df['y'].iloc[0]) / (df['x'].iloc[-1] - df['x'].iloc[0])
printEpr(epr)

Output:

End Point Rate:
    0.500 dy/dx

Alternatively you can use:

for named access

x, y = 'x', 'y'
epr = (df.loc[df.index[-1], y] - df.loc[df.index[0], y]) / \
      (df.loc[df.index[-1], x] - df.loc[df.index[0], x])
import pandas as pd

df = pd.DataFrame({'x': [1, 2, 3, 4, 5, 6, 7, 9]})
df['y'] = df['x'] / 2

def printEpr(epr):
    print(f"End Point Rate: {epr:.3f} dy/dx")

# Best practice: iloc
epr = (df['y'].iloc[-1] - df['y'].iloc[0]) / (df['x'].iloc[-1] - df['x'].iloc[0])
printEpr(epr)

# Alternative: loc
epr = (df.loc[df.index[-1], 'y'] - df.loc[df.index[0], 'y']) / \
      (df.loc[df.index[-1], 'x'] - df.loc[df.index[0], 'x'])
printEpr(epr)

Use .iloc for positions. Use .loc for labels, and avoid .values unless you explicitly want NumPy arrays.

It seems like you're already familiar with how to use the different indexing methods*, but you want to know how to do this cleanly and idiomatically.

Use whichever methods make sense. I haven't heard of "end point rate" before, but it looks like it's the ratio (/) of the difference (-) between the start and end of two different variables (i.e. columns). So, select y and x using [] or .loc[], then get their first and last values using .iloc[].

epr = (df['y'].iloc[-1] - df['y'].iloc[0]) / (df['x'].iloc[-1] - df['x'].iloc[0])

However, that's hard to read, so how about wrapping it in a function?

def calcEpr(a: pd.Series, b: pd.Series) -> float:
    diff_a = a.iloc[-1] - a.iloc[0]
    diff_b = b.iloc[-1] - b.iloc[0]
    return diff_a / diff_b

epr = calcEpr(df['y'], df['x'])
printEpr(epr)
End Point Rate:
    0.5 dy/dx

You could even abstract out the Pandas aspect:

def calcEpr(a_0, a_n, b_0, b_n) -> float:
    diff_a = a_n - a_0
    diff_b = b_n - b_0
    return diff_a / diff_b

def calcSeriesEpr(a: pd.Series, b: pd.Series) -> float:
    return calcEpr(*a.iloc[[0, -1]], *b.iloc[[0, -1]])

epr = calcSeriesEpr(df['y'], df['x'])

Footnotes

* as explained in the user guide: Indexing and selecting data - quoted for reference:

.loc is primarily label based ...

.iloc is primarily integer position based ...

... the primary function of indexing with [] is selecting out lower-dimensional slices. ...

  • Series: series[label] → scalar value
  • DataFrame: frame[colname] → Series corresponding to colname

Your Reply

By clicking “Post Your Reply”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.