Taking a page from the collections.namedtuple playbook, you can use exec to "dynamically" define func:
import numpy as np
import scipy.optimize as optimize
import textwrap
funcstr=textwrap.dedent('''\
def func(x, {p}):
return x * 2*a + 4*b - 5*c
''')
def make_model(**kwargs):
params=set(('a','b','c')).difference(kwargs.keys())
exec funcstr.format(p=','.join(params)) in kwargs
return kwargs['func']
func=make_model(a=3, b=1)
xdata = np.array([1,3,6,8,10])
ydata = np.array([ 0.91589774, 4.91589774, 10.91589774, 14.91589774, 18.91589774])
popt, pcov = optimize.curve_fit(func, xdata, ydata)
print(popt)
# [ 5.49682045]
Note the line
func=make_model(a=3, b=1)
You can pass whatever parameters you like to make_model. The parameters you pass to make_model become fixed constants in func. Whatever parameters remain become free parameters that optimize.curve_fit will try to fit.
For example, above, a=3 and b=1 become fixed constants in func. Actually, the exec statement places them in func's global namespace. func is thus defined as a function of x and the single parameter c. Note the return value for popt is an array of length 1 corresponding to the remaining free parameter c.
Regarding textwrap.dedent: In the above example, the call to textwrap.dedent is unnecessary. But in a "real-life" script, where funcstr is defined inside a function or at a deeper indentation level, textwrap.dedent allows you to write
def foo():
funcstr=textwrap.dedent('''\
def func(x, {p}):
return x * 2*a + 4*b - 5*c
''')
instead of the visually unappealing
def foo():
funcstr='''\
def func(x, {p}):
return x * 2*a + 4*b - 5*c
'''
Some people prefer
def foo():
funcstr=(
'def func(x, {p}):\n'
' return x * 2*a + 4*b - 5*c'
)
but I find quoting each line separately and adding explicit EOL characters a bit onerous. It does save you a function call however.