In CPython, threading is limited by the global interpreter lock — only one thread at a time can actually be executing Python code. So threading only benefits you if either:
you are doing processing that doesn't require the global interpreter lock; or
you are spending time blocked on I/O.
Examples of (1) include applying a filter to an image in the Python Imaging Library, or finding the eigenvalues of a matrix in numpy. Examples of (2) include waiting for user input, or waiting for a network connection to finish sending data.
So whether your code can be accelerated using threads in CPython depends on what exactly you are doing in the do_something call. (But if you are parsing the line in Python then it very unlikely that you can speed this up by launching threads.) You should also note that if you do start launching threads then you will face a synchronization problem when you are writing the results to the target file. There is no guarantee that threads will complete in the same order that they were started, so you will have to take care to ensure that the output comes out in the right order.
Here's a maximally threaded implementation that has threads for reading the input, writing the output, and one thread for processing each line. Only testing will tell you if this faster or slower than the single-threaded version (or Janne's version with only three threads).
from threading import Thread
from Queue import Queue
def process_file(f, source_filename, target_filename):
"""
Apply the function `f` to each line of `source_filename` and write
the results to `target_filename`. Each call to `f` is evaluated in
a separate thread.
"""
worker_queue = Queue()
finished = object()
def process(queue, line):
"Process `line` and put the result on `queue`."
queue.put(f(line))
def read():
"""
Read `source_filename`, create an output queue and a worker
thread for every line, and put that worker's output queue onto
`worker_queue`.
"""
with open(source_filename) as source:
for line in source:
queue = Queue()
Thread(target = process, args=(queue, line)).start()
worker_queue.put(queue)
worker_queue.put(finished)
Thread(target = read).start()
with open(target_filename, 'w') as target:
for output in iter(worker_queue.get, finished):
target.write(output.get())