I simplified the model to make it more understandable.
Clear["Global`*"]
h = 1 - rs/r + (8 \[Pi] r0^3 \[Rho]0)/
Sqrt[r^2 + r0^2] - (8 \[Pi] r0^3 \[Rho]0 ArcSinh[r/r0])/r;
g = 1 - rs/r[\[Phi]] - (8 \[Pi] r0^3 \[Rho]0 ArcSinh[r[\[Phi]]/r0])/
r[\[Phi]] + (8 \[Pi] r0^3 \[Rho]0)/Sqrt[r0^2 + r[\[Phi]]^2];
G = Assuming[u[\[Phi]] > 0,
1/b^2 - u[\[Phi]]^2 (g) /. r[\[Phi]] -> 1/u[\[Phi]]];
\[Phi]tailcontrolsigmoid[\[Phi]min_, \[Phi]max_, \[Sigma]_] := (1/(1 +
Exp[(\[Phi]min/\[Phi]max - 1)/\[Sigma]]))
rs = 2;
r0 = 1;
\[Rho]0 = 0.01;
bmax = 1.2;
db = 0.2;
\[Phi]min = 0.001;
\[Phi]max = 3 \[Pi];
PhiMax[b_] := (1 - b/(bmax)) \[Phi]max
rF = ParametricNDSolveValue[{u''[\[Phi]] ==
1/2 (-((-2 - 0.25132741228718347` ArcSinh[1/u[\[Phi]]] +
0.25132741228718347`/((1 + 1/u[\[Phi]]^2)^(3/2)
u[\[Phi]]^3) + 0.25132741228718347`/(
Sqrt[1 + 1/u[\[Phi]]^2] u[\[Phi]])) u[\[Phi]]^2) -
2 u[\[Phi]] (1 + 0.25132741228718347`/Sqrt[
1 + 1/u[\[Phi]]^2] - 2 u[\[Phi]] -
0.25132741228718347` ArcSinh[1/u[\[Phi]]] u[\[Phi]])),
u'[0.001] == 1/b, u[0.001] == .001}, u, {\[Phi], .001, 2.4}, b];
Horizon = FindRoot[h, {r, rs}][[1, 2]];
Visualization
pl = Table[
PolarPlot[1/rF[b][\[Phi]], {\[Phi], \[Phi]min, 2.4},
PlotRange -> Automatic, Frame -> True, AspectRatio -> Automatic,
PlotStyle -> Blend[{Cyan, Magenta}, (b - 1)/(bmax - 1)]], {b, 1,
bmax, db}];
BH = PolarPlot[{r = Horizon}, {\[Theta], 0, 2 \[Pi]},
PlotStyle -> {Directive[Dashed, Thick, Red]}];
BH1 = Graphics[{PointSize[0.08], Point[{0, 0}]}];
A3 = Legended[Show@pl,
Placed[BarLegend[{(Blend[{Cyan,
Magenta}, (# - 1)/(bmax - 1)] &), {1, bmax}},
LegendLayout -> "Column", LegendLabel -> "b"], Right]];
B = Show[A3, BH, BH1]

This is more advanced code for bmax=4
rF = ParametricNDSolveValue[{u''[\[Phi]] ==
1/2 (-((-2 - 0.25132741228718347` ArcSinh[1/u[\[Phi]]] +
0.25132741228718347`/((1 + 1/u[\[Phi]]^2)^(3/2)
u[\[Phi]]^3) + 0.25132741228718347`/(
Sqrt[1 + 1/u[\[Phi]]^2] u[\[Phi]])) u[\[Phi]]^2) -
2 u[\[Phi]] (1 + 0.25132741228718347`/Sqrt[
1 + 1/u[\[Phi]]^2] - 2 u[\[Phi]] -
0.25132741228718347` ArcSinh[1/u[\[Phi]]] u[\[Phi]])),
u'[0.001] == 1/b, u[0.001] == .001},
u, {\[Phi], .001, phi}, {b, phi}];
Visualization
With[{bmax = 4}, m = Table[2.4 + (x - 1)/2.4, {x, 1, bmax, db}];
bb = Table[x, {x, 1, bmax, db}];
pl1 = Table[
PolarPlot[1/rF[bb[[i]], m[[i]]][\[Phi]], {\[Phi], \[Phi]min, m[[i]]},
PlotRange -> Automatic, Frame -> True, AspectRatio -> Automatic,
PlotStyle ->
Blend[{Cyan, Magenta}, (bb[[i]] - 1)/(bmax - 1)]], {i, Length@bb}];
BH = PolarPlot[{r = Horizon}, {\[Theta], 0, 2 \[Pi]},
PlotStyle -> {Directive[Dashed, Thick, Red]}];
BH1 = Graphics[{PointSize[0.08], Point[{0, 0}]}];
A3 = Legended[Show@pl1,
Placed[BarLegend[{(Blend[{Cyan,
Magenta}, (# - 1)/(bmax - 1)] &), {1, bmax}},
LegendLayout -> "Column", LegendLabel -> "b"], Right]];
B = Show[A3, BH, BH1]]
