I think you can use:
max_col = df['MAX']
print (max_col)
0 51
1 45
2 48
Name: MAX, dtype: int64
If you want select 4. column use iloc:
max_col = df.iloc[:, 3] #3, because python counts 0,1,2,3
print (max_col)
0 51
1 45
2 48
Name: MAX, dtype: int64
First you can omit header=0, because it is default value in read_csv and add parse_dates for converting Valid Date to datetime.
If need dict from columns Valid Date,MAX,MIN use to_dict, if you want different format of dict, try add parameter orient:
df = pd.read_csv(r'C:\TempData.txt', sep = "\t", parse_dates=[2])
print (df)
CODE O/F Valid Date MAX MIN AVG
0 K3T5 O 1995-01-01 51 36 44
1 K3T5 O 1995-01-02 45 33 39
2 K3T5 O 1995-01-03 48 38 43
print (df[['Valid Date','MAX','MIN']])
Valid Date MAX MIN
0 1995-01-01 51 36
1 1995-01-02 45 33
2 1995-01-03 48 38
print (df[['Valid Date','MAX','MIN']].to_dict())
{'MAX': {0: 51, 1: 45, 2: 48},
'MIN': {0: 36, 1: 33, 2: 38},
'Valid Date': {0: Timestamp('1995-01-01 00:00:00'), 1: Timestamp('1995-01-02 00:00:00'), 2: Timestamp('1995-01-03 00:00:00')}}
print (df[['Valid Date','MAX','MIN']].to_dict(orient='split'))
{'data': [['1995/01/01', 51, 36], ['1995/01/02', 45, 33], ['1995/01/03', 48, 38]], 'index': [0, 1, 2], 'columns': ['Valid Date', 'MAX', 'MIN']}
max_col = df['MAX']TypeError: 'DataFrame' object is not callablethat means theDataFrameclass has not re-implement__call__function. You can't call a object which has not re-implement__call__function. Typedf['MAX'], you can get that column.