The literal "one" is a const char [4].
this code:
test("one")
would ideally like to call test(const char (&)[4])
This works for test(const T&) (because const char (&) [4] can bind to const char (const&) [4]).
But it cannot work for test(T t) because you can't pass string literals by value. They are passed by reference.
However, const char[4] can decay to const char*, which can match template<class T> void func(T t).
The proof is in the pudding:
#include <cstdint>
#include <iostream>
#include <typeinfo>
template <typename T, std::size_t N>
void test_const(const T(&t)[N])
{
std::cout << __func__ << " for literal " << t << " T is a " << typeid(T).name() << " and N is " << N << std::endl;
}
template <typename T>
void test_mutable(T &t)
{
std::cout << __func__ << " for literal " << t << " T is a " << typeid(T).name() << std::endl;
}
template <typename T>
void test_const_ref(const T &t)
{
std::cout << __func__ << " for literal " << t << " T is a " << typeid(T).name() << std::endl;
}
template <typename T>
void test_copy(T t)
{
std::cout << __func__ << " for literal " << t << " T is a " << typeid(T).name() << std::endl;
}
int main()
{
test_const("one");
test_const("three");
test_mutable("one");
test_mutable("three");
test_const_ref("one");
test_const_ref("three");
test_copy("one");
test_copy("three");
}
example results (clang):
test_const for literal one T is a c and N is 4
test_const for literal three T is a c and N is 6
test_mutable for literal one T is a A4_c
test_mutable for literal three T is a A6_c
test_const_ref for literal one T is a A4_c
test_const_ref for literal three T is a A6_c
test_copy for literal one T is a PKc
test_copy for literal three T is a PKc
Here is a version with demangled names (will compile on clang and gcc):
#include <cstdint>
#include <iostream>
#include <typeinfo>
#include <cstdlib>
#include <cxxabi.h>
std::string demangle(const char* name)
{
int status = -1;
// enable c++11 by passing the flag -std=c++11 to g++
std::unique_ptr<char, void(*)(void*)> res {
abi::__cxa_demangle(name, NULL, NULL, &status),
std::free
};
return (status==0) ? res.get() : name ;
}
template <typename T, std::size_t N>
void test_const(const T(&t)[N])
{
std::cout << __func__ << " for literal " << t << " T is a " << demangle(typeid(T).name()) << " and N is " << N << std::endl;
}
template <typename T>
void test_mutable(T &t)
{
std::cout << __func__ << " for literal " << t << " T is a " << demangle(typeid(T).name()) << std::endl;
}
template <typename T>
void test_const_ref(const T &t)
{
std::cout << __func__ << " for literal " << t << " T is a " << demangle(typeid(T).name()) << std::endl;
}
template <typename T>
void test_copy(T t)
{
std::cout << __func__ << " for literal " << t << " T is a " << demangle(typeid(T).name()) << std::endl;
}
int main()
{
test_const("one");
test_const("three");
test_mutable("one");
test_mutable("three");
test_const_ref("one");
test_const_ref("three");
test_copy("one");
test_copy("three");
}
expected output:
test_const for literal one T is a char and N is 4
test_const for literal three T is a char and N is 6
test_mutable for literal one T is a char [4]
test_mutable for literal three T is a char [6]
test_const_ref for literal one T is a char [4]
test_const_ref for literal three T is a char [6]
test_copy for literal one T is a char const*
test_copy for literal three T is a char const*
Ts, achar[4]("one") and achar[6]("three"). Therefore you have 2 new types, both containing anf, therefore both of thosefs must be initialised. HencecreateFile()is called twice.const char *instantiation for all literals. The reference is the critical piece in this case that makes the length of the literal part of function type.