I am writing code that will build an oriented bounding box (obb) tree for a (not necessarily convex) polygon in 2 dimensions.
So far, I'm able to find the area-minimal obb of a polygon by finding its convex hull and using rotating calipers on the hull.
The picture below is an example of this. The yellow-filled polygon with red lines and red points depicts the original polygon. The convex hull is shown in blue with black lines and the obb is shown as purple lines.

(Edit) As requested: Interactive Version - tested only in chrome
Now I want to extend my code to build an OBB tree, instead of just an OBB. This means I have to cut the polygon, and compute new OBBs for each half of the polygon.
The recommended way to do this seems to be to cut the polygon by cutting the OBB in half. But if I cut the obb through the middle in either of its axes it looks like I would have to create new vertices on the polygon (otherwise how do I find the convex hull of that partition?).
- Is there a way to avoid adding vertices like this?
- If not, what is the easiest way to do it (with respect to implementation difficulty)? What is the most runtime-efficient way?

:

body-stylescripttags). Keep in mind, you need someone to come by who knows what the heck this is all about.