Another perspective on this is, instead of asking "how" to handle the abhorrent verbosity, whether we actually "should". This advice is heavily dependent on context, so be careful.
In order to decide whether handling the json.Marshal error is worth it, we can inspect its implementation to see when errors are returned. In order to return errors to the caller and preserve code terseness, json.Marshal uses panic and recover internally in a manner akin to exceptions. It defines an internal helper method which, when called, panics with the given error value. By looking at each call of this function, we learn that json.Marshal errors in the given scenarios:
- calling
MarshalJSON or MarshalText on a value/field of a type which implements json.Marshaler or encoding.TextMarshaler returns an error—in other words, a custom marshaling method fails;
- the input is/contains a cyclic (self-referencing) structure;
- the input is/contains a value of an unsupported type (
complex, chan, func);
- the input is/contains a floating-point number which is
NaN or Infinity (these are not allowed by the spec, see section 2.4);
- the input is/contains a
json.Number string that is an incorrect number representation (for example, "foo" instead of "123").
Now, a usual scenario for marshaling data is creating an API response, for example. In that case, you will 100% have data types that satisfy all of the marshaler's constraints and valid values, given that the server itself generates them. In the situation user-provided input is used, the data should be validated anyway beforehand, so it should still not cause issues with the marshaler. Furthermore, we can see that, apart from the custom marshaler errors, all the other errors occur at runtime because Go's type system cannot enforce the required conditions by itself. With all these points given, here comes the question: given our control over the data types and values, do we need to handle json.Marshal's error at all?
Probably no. For a type like
type Person struct {
Name string
Age int
}
it is now obvious that json.Marshal cannot fail. It is trickier when the type looks like
type Foo struct {
Data any
}
(any is a new Go 1.18 alias for interface{}) because there is no compile-time guarantee that Foo.Data will hold a value of a valid type—but I'd still argue that if Foo is meant to be serialized as a response, Foo.Data will also be serializable. Infinity or NaN floats remain an issue, but, given the JSON standard limitation, if you want to serialize these two special values you cannot use JSON numbers anyway, so you'll have to look for another solution, which means that you'll end up avoiding the error anyway.
To conclude, my point is that you can probably do:
aJson, _ := json.Marshal(a)
bJson, _ := json.Marshal(b)
cJson, _ := json.Marshal(c)
dJson, _ := json.Marshal(d)
eJson, _ := json.Marshal(e)
fJson, _ := json.Marshal(f)
gJson, _ := json.Marshal(g)
and live fine with it. If you want to be pedantic, you can use a helper such as:
func must[T any](v T, err error) T {
if err != nil {
panic(err)
}
return v
}
(note the Go 1.18 generics usage) and do
aJson := must(json.Marshal(a))
bJson := must(json.Marshal(b))
cJson := must(json.Marshal(c))
dJson := must(json.Marshal(d))
eJson := must(json.Marshal(e))
fJson := must(json.Marshal(f))
gJson := must(json.Marshal(g))
This will work nice when you have something like an HTTP server, where each request is wrapped in a middleware that recovers from panics and responds to the client with status 500. It's also where you would care about these unexpected errors—when you don't want the program/service to crash at all. For one-time scripts you'll probably want to have the operation halted and a stack trace dumped.
If you're unsure of how your types will be changed in the future, you don't trust your tests, data may not be in your full control, the codebase is too big to trace the data or whatever other reason which causes uncertainty over the correctness of your data, it is better to handle the error. Pay attention to the context you're in!
P.S.: Pragmatically ignoring errors should be generally sought after. For example, the Write* methods on bytes.Buffer, strings.Builder never return errors; fmt.Fprintf, with a valid format string and a writer that doesn't return errors, also returns no errors; bufio.Writer aswell doesn't, if the underlying writer doesn't return. You will find some types implement interfaces with methods that return errors but don't actually return any. In these cases, if you know the concrete type, handling errors is unnecessarily verbose and redundant. What do you prefer,
var sb strings.Builder
if _, err := sb.WriteString("hello "); err != nil {
return err
}
if _, err := sb.WriteString("world!"); err != nil {
return err
}
or
var sb strings.Builder
sb.WriteString("hello ")
sb.WriteString("world!")
(of course, ignoring that it could be a single WriteString call)?
The given examples write to an in-memory buffer, which unless the machine is out of memory, an error which you cannot handle in Go, cannot ever fail. Other such situations will surface in your code—blindly handling errors adds little to no value! Caution is key—if an implementation changes and does return errors, you may be in trouble. Standard library or well-established packages are good candidates for eliding error checking, if possible.
cJsonfailed, attached with theerr. But even that depends on the context of where this is being ran.errors: add support for wrapping multiple errors"