I've read the masked array documentation several times now, searched everywhere and feel thoroughly stupid. I can't figure out for the life in me how to apply a mask from one array to another.
Example:
import numpy as np
y = np.array([2,1,5,2]) # y axis
x = np.array([1,2,3,4]) # x axis
m = np.ma.masked_where(y>2, y) # filter out values larger than 5
print m
[2 1 -- 2]
print np.ma.compressed(m)
[2 1 2]
So this works fine.... but to plot this y axis, I need a matching x axis. How do I apply the mask from the y array to the x array? Something like this would make sense, but produces rubbish:
new_x = x[m.mask].copy()
new_x
array([5])
So, how on earth is that done (note the new x array needs to be a new array).
Edit:
Well, it seems one way to do this works like this:
>>> import numpy as np
>>> x = np.array([1,2,3,4])
>>> y = np.array([2,1,5,2])
>>> m = np.ma.masked_where(y>2, y)
>>> new_x = np.ma.masked_array(x, m.mask)
>>> print np.ma.compressed(new_x)
[1 2 4]
But that's incredibly messy! I'm trying to find a solution as elegant as IDL...
plot(x, m)without making a new_x?new_x = x[~m.mask].copy(). Note the~, as the mask is True where the value is masked..copy()innew_x = x[~m.mask].copy(). Indexing with a boolean array will always result in a copy, so this can benew_x = x[~m.mask].new_y = y[y < 5]andnew_x = x[y < 5].mask = y < 5; m = y[mask]; new_x = x[mask]. In this way you avoid using masked arrays and keep it more simple and straight.