I have written some code to essentially do a excel style vlookup on two pandas dataframes and want to speed it up.
The structure of the data frames is as follows:
dbase1_df.columns:
'VALUE', 'COUNT', 'GRID', 'SGO10GEO'
merged_df.columns:
'GRID', 'ST0, 'ST1', 'ST2', 'ST3', 'ST4', 'ST5', 'ST6', 'ST7', 'ST8', 'ST9', 'ST10'
sgo_df.columns:
'mkey', 'type'
To combine them, I do the following:
1. For each row in dbase1_df, find the row where its 'SGO10GEO' value matches the 'mkey' value of sgo_df. Obtain the 'type' from that row in sgo_df.
'type' contains an integer ranging from 0 to 10. Create a column name by appending 'ST' to type.
Find the value in merged_df, where its 'GRID' value matches the 'GRID' value in dbase1_df and the column name is the one we obtained in step 2. Output this value into a csv file.
// Read in dbase1 dbf into data frame
dbase1_df = pandas.DataFrame.from_csv(dbase1_file,index_col=False)
merged_df = pandas.DataFrame.from_csv('merged.csv',index_col=False)
lup_out.writerow(["VALUE","TYPE",EXTRACT_VAR.upper()])
// For each unique value in dbase1 data frame:
for index, row in dbase1_df.iterrows():
# 1. Find the soil type corresponding to the mukey
tmp = sgo_df.type.values[sgo_df['mkey'] == int(row['SGO10GEO'])]
if tmp.size > 0:
s_type = 'ST'+tmp[0]
val = int(row['VALUE'])
# 2. Obtain hmu value
tmp_val = merged_df[s_type].values[merged_df['GRID'] == int(row['GRID'])]
if tmp_val.size > 0:
hmu_val = tmp_val[0]
# 4. Output into data frame: VALUE, hmu value
lup_out.writerow([val,s_type,hmu_val])
else:
err_out.writerow([merged_df['GRID'], type, row['GRID']])
Is there anything here that might be a speed bottleneck? Currently it takes me around 20 minutes for around ~500,000 rows in dbase1_df; ~1,000 rows in merged_df and ~500,000 rows in sgo_df.
thanks!