There are two main ways of accomplishing this.
note: I'm not sure what your second for loop is doing. I guess the intention was to ensure that the numbers are all unique? You might want to take a look at it as that is not what it is doing.
For the purposes of this question, I've cut it down to just generating the random numbers to populate the array.
The first is to take your code and fix it to put the generated numbers into the array that was passed in:
#include <iostream>
void getLotto(int numbers[7]) {
for (int i = 0; i < 7; i++)
{numbers[i] = rand() % 35 + 1;}
return;
}
int main()
{
srand(time(0));
int lotto_numbers[7];
getLotto(lotto_numbers);
for (int i = 0; i < 7; i++)
{std::cout<<lotto_numbers[i]<<std::endl;}
}
numbers isn't actually passed in as an int[] but instead as an int* pointing to the array. This means that any changes you make to it in the function are changed in the original data.
Bear in mind that you need to keep track of your array bounds though, as the array could be defined as
int lotto_numbers[6]
which means that
numbers[7]
would be out of bounds.
The second method is to create the array on the heap. This means that you don't need to pass in an array but you can instantiate it in the function
I'm not actually going to provide the code for this here. Mainly because for something simple like this, the memory management is more trouble than it is worth. (you need to remember to call delete[] for everything created on the heap etc).
Instead, lets use something with memory management built in:
#include <iostream>
#include <vector>
std::vector<int> getLotto() {
std::vector<int> numbers;
numbers.reserve(7);
for (int i = 0; i < 7; i++) {
//numbers[i] = rand() % 35 + 1;
//would work, but is unsafe as you could potentially reference somthing out of range
//this is safer:
numbers.push_back(rand() % 35 + 1);
}
return numbers;
}
int main()
{
srand(time(0));
std::vector<int> lotto_numbers = getLotto();
for (auto i = lotto_numbers.begin(); i != lotto_numbers.end(); i++)
{
std::cout<<*i<<std::endl;
}
}
The vector handles the memory management for you. The vector can be returned, and the returned vector will still point at the allocated memory on the heap we have just populated. We don't need to free it as this will be done automatically when the vector goes out of scope.
radis aint*and not an array.