5

I am trying to plot the frequency spectrum of a wav file, but it seems like frequency spectrum always matches the time domain signal, with the following code.

import matplotlib.pyplot as plt
import numpy as np


def plot(data):
    plt.plot(data, color='steelblue')
    plt.figure()
    plt.show()

rate, wav_data = wavfile.read("audio_self/on/on.wav")
plot(wav_data)
plot(np.abs(np.fft.fft(wav_data)))

Am I doing something wrong?

2
  • You probably have a single large spike at zero that causes the rest of the data to be scaled to invisibility. Try plotting the FFT in a different color. Commented Dec 5, 2014 at 2:07
  • 1
    Note that you call plotWav, but you have defined plot. Apart from this your code should work. Also, the audio file should be mono. Commented Dec 7, 2014 at 12:28

1 Answer 1

2

If you want two separate a stereo track to left and right channels and then take a separate graph of each, it would be a lot more accurate of a reading unless you put the track in mono like Frank Zalkow says. This is how to separate the stereo track into left and right channels:

"""
Plot
"""
#Plots a stereo .wav file
#Decibels on the y-axis
#Frequency Hz on the x-axis

import matplotlib.pyplot as plt
import numpy as np

from pylab import*
from scipy.io import wavfile


def plot(file_name):

    sampFreq, snd = wavfile.read(file_name)

    snd = snd / (2.**15) #convert sound array to float pt. values

    s1 = snd[:,0] #left channel

    s2 = snd[:,1] #right channel

    n = len(s1)
    p = fft(s1) # take the fourier transform of left channel

    m = len(s2) 
    p2 = fft(s2) # take the fourier transform of right channel

    nUniquePts = ceil((n+1)/2.0)
    p = p[0:nUniquePts]
    p = abs(p)

    mUniquePts = ceil((m+1)/2.0)
    p2 = p2[0:mUniquePts]
    p2 = abs(p2)

'''
Left Channel
'''
   p = p / float(n) # scale by the number of points so that
             # the magnitude does not depend on the length 
             # of the signal or on its sampling frequency  
   p = p**2  # square it to get the power 




# multiply by two (see technical document for details)
# odd nfft excludes Nyquist point
    if n % 2 > 0: # we've got odd number of points fft
        p[1:len(p)] = p[1:len(p)] * 2
    else:
        p[1:len(p) -1] = p[1:len(p) - 1] * 2 # we've got even number of points fft

     freqArray = arange(0, nUniquePts, 1.0) * (sampFreq / n);
     plt.plot(freqArray/1000, 10*log10(p), color='k')
     plt.xlabel('LeftChannel_Frequency (kHz)')
     plt.ylabel('LeftChannel_Power (dB)')
     plt.show()

'''
Right Channel
'''
    p2 = p2 / float(m) # scale by the number of points so that
             # the magnitude does not depend on the length 
             # of the signal or on its sampling frequency  
    p2 = p2**2  # square it to get the power 




# multiply by two (see technical document for details)
# odd nfft excludes Nyquist point
    if m % 2 > 0: # we've got odd number of points fft
         p2[1:len(p2)] = p2[1:len(p2)] * 2
    else:
         p2[1:len(p2) -1] = p2[1:len(p2) - 1] * 2 # we've got even number of points fft

    freqArray2 = arange(0, mUniquePts, 1.0) * (sampFreq / m);
    plt.plot(freqArray2/1000, 10*log10(p2), color='k')
    plt.xlabel('RightChannel_Frequency (kHz)')
    plt.ylabel('RightChannel_Power (dB)')
    plt.show()

I hope this helps.

Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.