Disclaimer: following example is just an dummy example to quickly understand the problem. If you are thinking about real world problem, think anything dynamic programming.
The problem: We have an n*m matrix, and we want to copy elements from previous row as in the following code:
for (i = 1; i < n; i++)
for (j = 0; j < m; j++)
x[i][j] = x[i-1][j];
Approach: Outer loop iterations have to be executed in order, they would be executed sequentially. Inner loop can be parallelized. We would want to minimize overhead of creating and killing threads, so we would want to create team of threads just once, however, this seems like an impossible task in OpenMP.
#pragma omp parallel private(j)
{
for (i = 1; i < n; i++)
{
#pragma omp for scheduled(dynamic)
for (j = 0; j < m; j++)
x[i][j] = x[i-1][j];
}
}
When we apply ordered option on the outer loop, the code will be executed sequential way, so there will be no performance gain.
I am looking to solution for the scenario above, even if I had to use some workaround.
I am adding my actual code. This is is actually slower than seq. version. Please review:
/* load input */
for (i = 1; i <= n; i++)
scanf ("%d %d", &in[i][W], &in[i][V]);
/* init */
for (i = 0; i <= wc; i++)
a[0][i] = 0;
/* compute */
#pragma omp parallel private(i,w)
{
for(i = 1; i <= n; ++i) // 1 000 000
{
j=i%2;
jn = j == 1 ? 0 : 1;
#pragma omp for
for(w = 0; w <= in[i][W]; w++) // 1000
a[j][w] = a[jn][w];
#pragma omp for
for(w = in[i][W]+1; w <= wc; w++) // 350 000
a[j][w] = max(a[jn][w], in[i][V] + a[jn][w-in[i][W]]);
}
}
As for measuring, I am using something like this:
double t;
t = omp_get_wtime();
// ...
t = omp_get_wtime() - t;
parallel forused directly on the inner loop gives weak results compared to theory.