Convert nested list to pandas dataframe:
import pandas as pd
# Sample data (replace with your `Final_data` if obtained from scraping)
data = [[['1', 'Walmart', 'https://www.walmart.com/'], ['2', 'Amazon', 'https://www.amazon.com/'], ['3', 'Exxon Mobil', 'https://corporate.exxonmobil.com/'], ['4', 'Apple', 'https://www.apple.com/'], ['5', 'UnitedHealth Group', 'https://www.unitedhealthgroup.com/'], ['6', 'CVS Health', 'https://www.cvshealth.com/'], ['7', 'Berkshire Hathaway', 'https://www.berkshirehathaway.com/'], ['8', 'Alphabet', 'https://abc.xyz/'], ['9', 'McKesson', 'https://www.mckesson.com/'], ['10', 'Chevron', 'https://www.chevron.com/']], [['11', 'AmerisourceBergen', 'https://www.amerisourcebergen.com/'], ['12', 'Costco Wholesale', 'https://www.costco.com/'], ['13', 'Microsoft', 'https://www.microsoft.com/'], ['14', 'Cardinal Health', 'https://www.cardinalhealth.com/'], ['15', 'Cigna', 'https://www.cigna.com/'], ['16', 'Marathon Petroleum', 'https://www.marathonpetroleum.com/'], ['17', 'Phillips 66', 'https://www.phillips66.com/'], ['18', 'Valero Energy', 'https://www.valero.com/'], ['19', 'Ford Motor', 'https://www.ford.com/'], ['20', 'Home Depot', 'https://www.homedepot.com/']]]
# Create a DataFrame from the list, flattening each sublist into rows
df = pd.DataFrame([item for sublist in data for item in sublist])
# Rename columns (assuming the first element in each sublist is the S.No)
df.columns = ['S. No', 'Name', 'URL']
print(df)