pow does floating-point exponentiation.
Floating point functions and operations are inexact, you cannot ever rely on them to give you the exact value that they would appear to compute, unless you are an expert on the fine details of IEEE floating point representations and the guarantees given by your library functions.
(and furthermore, floating-point numbers might even be incapable of representing the integers you want exactly)
This is particularly problematic when you convert the result to an integer, because the result is truncated to zero: int x = 0.999999; sets x == 0, not x == 1. Even the tiniest error in the wrong direction completely spoils the result.
You could round to the nearest integer, but that has problems too; e.g. with sufficiently large numbers, your floating point numbers might not have enough precision to be near the result you want. Or if you do enough operations (or unstable operations) with the floating point numbers, the errors can accumulate to the point you get the wrong nearest integer.
If you want to do exact, integer arithmetic, then you should use functions that do so. e.g. write your own ipow function that computes integer exponentiation without any floating-point operations at all.
int!=doublepowis returning the wrong answer, which is somewhat surprising but not impossible.pow(10,2)is returning 99.9999999999999 and assigning that to anintgives you 99.