What is the dplyr way to apply a function rowwise for some columns. For example I want to Grab all the V, columns and turn them into percents based on the row sums. I show how to do it in base. What about in a dplyr chain. It'd nice to see in data.table form as well (though preference would go to a dplyr solution here).
x <- data.frame(A=LETTERS[1:5], as.data.frame(matrix(sample(0:5, 25, T), ncol=5)))
data.frame(x[1], x[-1]/rowSums(x[-1]))
## A V1 V2 V3 V4 V5
## 1 A 0.1428571 0.2142857 0.2142857 0.35714286 0.07142857
## 2 B 0.2000000 0.2000000 0.1500000 0.20000000 0.25000000
## 3 C 0.3571429 0.2857143 0.0000000 0.07142857 0.28571429
## 4 D 0.1904762 0.2380952 0.1904762 0.23809524 0.14285714
## 5 E 0.2000000 0.2500000 0.1500000 0.25000000 0.15000000
library(dplyr)
props <- function(x) round(x/sum(x), 2)
# does not work
x %>%
rowwise()
mutate(props(matches("^.{2}$")))
x %>% rowwise() %>% select(matches("^.{2}$")) %>% props %>% cbind(x[1], .)? The second half isn't really dplyrey thoughrowSumsin dplyr too? Something likeprops <- function(x, y) round(x/y, 2) ; x %>% mutate(Total = rowSums(.[-1])) %>% mutate_each(funs(./Total), -c(A, Total)). Though bothrowSumsandrowwiseshould be inefficient. I would go withReduce(`+`, .[-1]))instead, if you don't haveNAs.