import pandas as pd
data = {
"K": ["A", "A", "B", "B", "B"],
"LABEL": ["X123", "X123", "X21", "L31", "L31"],
"VALUE": [1, 3, 1, 2, 5.0]
}
df = pd.DataFrame.from_dict(data)
output = """
K LABEL VALUE
0 A X12 1.0
1 A X12 3.0
2 B X21 1.0
3 B L31 2.0
4 B L31 5.0
"""
Transformation steps
For each group ( grouped by K ), find FINAL_VALUE defined below.
Where LABEL are or two types X__ and L__
# if LABEL is X___ then FINAL_VALUE = sum(VALUE)
# if LABEL is L___ then FINAL_VALUE = count(VALUE)
# else FINAL_VALUE = 0
Result of transformation
expected_output = """
K LABEL FINAL_VALUE
A X12 4
B X21 1
B L31 2
"""
How can I achieve this using Pandas ?
EDIT1: Partially working
In [17]: df.groupby(["K", "LABEL"]).agg({"VALUE": {"VALUE_SUM": "sum", "VALUE_COUNT": "count"}})
Out[17]:
VALUE
VALUE_COUNT VALUE_SUM
K LABEL
A X12 2 4.0
B L31 2 7.0
X21 1 1.0
EDIT2: Using reset_index() to fill up the dataframe
In [18]: df2 = df.groupby(["K", "LABEL"]).agg({"VALUE": {"VALUE_SUM": "sum", "VALUE_COUNT": "count"}})
In [21]: df2.reset_index()
Out[21]:
K LABEL VALUE
VALUE_COUNT VALUE_SUM
0 A X12 2 4.0
1 B L31 2 7.0
2 B X21 1 1.0
EDIT3: Final solution using df.apply()
In [59]: df3 = df2.reset_index()
In [60]: df3["FINAL_VALUE"] = df3.apply(lambda x: x["VALUE"]["VALUE_SUM"] if x["LABEL"].str.startswith("X").any() else x["VALUE"]["VALUE_COUNT"] , axis=1)
In [61]: df3[["K", "LABEL", "FINAL_VALUE"]]
Out[61]:
K LABEL FINAL_VALUE
0 A X12 4.0
1 B L31 2.0
2 B X21 1.0