I'm reading a csv file to dataframe
datafram = spark.read.csv(fileName, header=True)
but the data type in datafram is String, I want to change data type to float. Is there any way to do this efficiently?
If you want to do the casting when reading the CSV, you can use the inferSchema argument when reading the data. Let's try with a a small test csv file:
$ cat ../data/test.csv
a,b,c,d
5.0, 1.0, 1.0, 3.0
2.0, 0.0, 3.0, 4.0
4.0, 0.0, 0.0, 6.0
Now, if we read it as you did, we will have string values:
>>> df_csv = spark.read.csv("../data/test.csv", header=True)
>>> print(df_csv.dtypes)
[('a', 'string'), ('b', 'string'), ('c', 'string'), ('d', 'string')]
However, if we set inferSchema to True, it will correctly identify them as doubles:
>>> df_csv2 = spark.read.csv("../data/test.csv", header=True, inferSchema=True)
>>> print(df_csv2.dtypes)
[('a', 'double'), ('b', 'double'), ('c', 'double'), ('d', 'double')]
However, this approach requires another run over the data. You can find more information on the DataFrameReader CSV documentation.
schema=