As long as your number n is reasonably small (smaller than approx. 1500), my guess for the fastest way to do this is to actually try all possible values. You can do this quickly by using numpy:
import numpy as np
import scipy.misc as misc
nMax = 1000
a = 77
b = 100
n = np.arange(1, nMax+1, dtype=np.float64)
val = misc.comb(n, a)/n**b
print("Maximized for n={:d}".format(int(n[val.argmax()]+0.5)))
# Maximized for n=181
This is not especially elegant but rather fast for that range of n. Problem is that for n>1484 the numerator can already get too large to be stored in a float. This method will then fail, as you will run into overflows. But this is not only a problem of numpy.ndarray not working with python integers. Even with them, you would not be able to compute:
misc.comb(10000, 1000, exact=True)/10000**1001
as you want to have a float result in your division of two numbers larger than the maximum a float in python can hold (max_10_exp = 1024 on my system. See sys.float_info().). You couldn't use your range in that case, as well. If you really want to do something like that, you will have to take more care numerically.
nto be? Of the order of 181 as in the linked answer, or more of the order of 7.5 billion humans on earth?combinto a function over the reals via the gamma function (or by approximating with Stirling's formula). Then you can do a numerical solution technique and then just check which nearby integer is max.