Little correction to your statement:
I understand worst case happens when the pivot is the smallest or the largest element.
Actually, the worst case happens when each successive pivots are the smallest or the largest element of remaining partitioned array.
To better understand the worst case: Think about an already sorted array, which you may be trying to sort.
You select first element as first pivot. After comparing the rest of the array, you would find that the n-1 elements still are on the other end (rightside) and the first element remains at the same position, which actually totally beats the purpose of partitioning. These steps you would keep repeating till the last element with the same effect, which in turn would account for (n-1 + n-2 + n-3 + ... + 1) comparisons, and that sums up to (n*(n-1))/2 comparisons. So,
O(n*(n-1)/2) = O(n^2) for worst case.
To overcome this problem, it is always recommended to pick up each successive pivots randomly.
I would try to add explanation for average case as well.