0

Can some one with expertise explain how the following vectorized format of multiple linear regression is derived from given independent variable matrix with intercept X and dependent variable matrix Y, with m rows and n columns with n theta parameters? In Andrew Ng class, I am bit lost here on how this and non vectorized cost function are same? enter image description here

2 Answers 2

0

Ah! I think I got the answer. I forgot that what is happening is a square of a vector in the error part of the function. Hence it is transpose of vector.vector. Still not able to understand how X is defined with transposes of all independent variables in above definition, as I believe it is a matrix of dependent variables including intercept.

Sign up to request clarification or add additional context in comments.

Comments

0

you got the error for each data point :( X*Theta - y ) when you transpose and do inner product. It is as same as squaring all the errors and taking a sum.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.