0

I have this dataframe: enter image description here

I wish to have extract all the data for value column in form of array, which the output should be: [nan, 47, 47.9, 48.6]

Anyone can share me the ideas?

1

1 Answer 1

2

Use values for numpy array + numpy.ndarray.tolist for list:

L = df['value'].values.tolist()
#alternative
#L = df['value'].tolist()

Or convert to list:

L = list(df['value'])

EDIT:

It seems you need convert to float first by astype:

df = pd.DataFrame({'value':['nan','47','47.9','48.6']})
print (df)
  value
0   nan
1    47
2  47.9
3  48.6

L1 = df['value'].values.tolist()
print (L1)
['nan', '47', '47.9', '48.6']

L2 = df['value'].astype(float).values.tolist()
print (L2)
[nan, 47.0, 47.9, 48.6]

because if float all values get different output - 47.0 not 47:

df = pd.DataFrame({'value':[np.nan,47,47.9,48.6]})
   value
0    NaN
1   47.0
2   47.9
3   48.6

L = df['value'].values.tolist()
print (L)
[nan, 47.0, 47.9, 48.6]

EDIT1:

If astype return error e.g:

ValueError: could not convert string to float: 'a'

then need to_numeric with parameter errors='coerce' for convert non numeric to NaN

df = pd.DataFrame({'value':[np.nan,47,47.9,48.6, 'a']})
print (df)
  value
0   NaN
1    47
2  47.9
3  48.6
4     a

print (pd.to_numeric(df['value'], errors='coerce'))
0     NaN
1    47.0
2    47.9
3    48.6
4     NaN
Name: value, dtype: float64

L = pd.to_numeric(df['value'], errors='coerce').values.tolist()
print (L)
[nan, 47.0, 47.9, 48.6, nan]
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.