I am a newbie in Tensorflow. I just started working on this machine learning techonlogy from TensorFlow official website only.I am trying to implement Softmax Regressions but getting following errors.
ValueError: Dimensions must be equal, but are 784 and 10 for 'MatMul' (op: 'MatMul') with input shapes: [?,784], [10,784].
Here is the complete code :
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("MNIST_data/",one_hot=True)
x=tf.placeholder(tf.float32,[None,784])
W=tf.Variable(tf.zeros([10,784]))
b=tf.Variable(tf.zeros([10]))
y=tf.nn.softmax(tf.matmul(x,W)+b)
y_=tf.placeholder(tf.float32,[None,10])
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess=tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
Here is the output I am getting:
Thanks in advance.
