3

I'm kind of new to numba and was trying to speed up my monte carlo method with it. Im currently working on Ubuntu 14.04 with GeForce 950M. The CUDA version is 8.0.61.

When I try to run the following code I get some memory associated error from CUDA API

Code:

@cuda.jit
def SIR(rng_states, y, particles, weight, beta, omega, gamma, 
    greater, equal, phi, phi_sub):
    # thread/block index for accessing data
    tx = cuda.threadIdx.x # Thread id in a 1D block = particle index
    ty = cuda.blockIdx.x # Block id in a 1D grid = event index
    bw = cuda.blockDim.x # Block width, i.e. number of threads per block = particle number
    pos = tx + ty * bw # computed flattened index inside the array

    # get current event y_t
    y_current = y[ ty ]

    # get number of time steps
    tn = y_current.size

    # iterator over timestep
    for i in range(1, tn):
       # draw samples
        sirModule_sample_draw(rng_states, particles[ty][i-1], beta, 
                                 omega, particles[ty][i])

        # get weight
        sirModule_weight(particles[ty][i], particles[ty][i-1], weight[ty][i-1], 
                            weight[ty][i], y_current[i], beta, omega, gamma)

        # normalize weight
        weight_sum = arr_sum(weight[ty][i])
        arr_div(weight[ty][i], weight_sum)

        # calculate tau
        sirModule_tau(particles[ty][i], beta, omega, phi, phi_sub)

        # update greater and equal
        greater[ty][i] = greater[ty][i-1]*dot(weight[ty][i-1], phi)
        equal[ty][i] = greater[ty][i-1]*dot(weight[ty][i-1], phi_sub)

def main():

    beta = 1
    omega = 1
    gamma = 2    

    pn = 100
    event_number = 50
    timestep = 100

    y = np.ones((event_number, timestep), dtype = np.int8)
    particles = cuda.to_device(np.zeros((event_number, timestep, pn), dtype = np.float32))
    weight = cuda.to_device(np.ones((event_number, timestep, pn), dtype = np.float32))
    greater = cuda.to_device(np.ones((event_number, timestep), dtype = np.float32))
    equal = cuda.to_device(np.ones((event_number, timestep), dtype = np.float32))

    phi = cuda.to_device(np.zeros(particles[0][0].size, dtype = np.float32))
    phi_sub = cuda.to_device(np.zeros(particles[0][0].size, dtype = np.float32))

    rng_states = create_xoroshiro128p_states(pn, seed=1)

    start = timer()
    SIR[event_number, pn](rng_states, y, particles, weight, beta, 
    omega, gamma, greater, equal, phi, phi_sub)

    vectoradd_time = timer() - start

    print("sirModule1 took %f seconds" % vectoradd_time)

if __name__ == '__main__':
    main()

Then I get

numba.cuda.cudadrv.driver.CudaAPIError: [715] Call to cuMemcpyDtoH results in UNKNOWN_CUDA_ERROR

numba.cuda.cudadrv.driver.CudaAPIError: [715] Call to cuMemFree results in UNKNOWN_CUDA_ERROR

errors....

Did anybody face the same problem? I checked online and some suggest that the problem arise from WDDM TDR but I thought thats for only Windows, right?

The following is the missing part of the code.

import numpy as np
import numba as nb
from timeit import default_timer as timer
from matplotlib import pyplot as pt
import math
from numba import cuda
from numba.cuda.random import create_xoroshiro128p_states, xoroshiro128p_normal_float32

"""
Look up table for factorial
"""
LOOKUP_TABLE = cuda.to_device(np.array([
1, 1, 2, 6, 24, 120, 720, 5040, 40320,
362880, 3628800, 39916800, 479001600,
6227020800, 87178291200, 1307674368000,
20922789888000, 355687428096000, 6402373705728000,
121645100408832000, 2432902008176640000], dtype='int64'))


"""
arr_sum - sum element in array
"""
@cuda.jit(device=True)
def arr_sum(arr):
    result = 0
    for i in range(arr.size):
        result = result + arr[i]

    return result


"""
dot - dot product of arr1 and arr2
"""
@cuda.jit(device=True)
def dot(arr1, arr2):
    result = 0
    for i in range(arr1.size):
        result = arr1[i]*arr2[i] + result

    return result


"""
arr_div - divide element in array
"""
@cuda.jit(device=True)
def arr_div(arr, div):
    thread_id = cuda.threadIdx.x

    arr[thread_id] = arr[thread_id]/div

"""
SIR module (sample_draw) - module drawing sample for time t (rampling model)
"""
@cuda.jit(device=True)
def sirModule_sample_draw(rng_states, inp, beta, omega, out):
    """Find a value less than 1 from nomral distribution"""
    thread_id = cuda.threadIdx.x

    # draw candidate sample from normal distribution and store
    # when less than 1
    while True:
        candidate = inp[thread_id] + beta + omega * xoroshiro128p_normal_float32(rng_states, thread_id)

        if candidate < 1:
            out[thread_id] = candidate
            break


"""
SIR module (weight calculation) - weight calculation method
"""
@cuda.jit(device=True)
def sirModule_weight(current, previous, weight, out, y, beta, omega, gamma):
    thread_id = cuda.threadIdx.x
    PI = 3.14159265359

    # calculate the pdf/pmf of given state
    Z = ( current[thread_id] - ( previous[ thread_id ] + beta ) ) / omega
    p1_div_p3 = 1.0 / 2.0 * ( 1.0 + math.erf( Z ) )

    mu = math.log( 1 + math.exp( gamma * current[ thread_id ] ) )    
    p2 = math.exp( mu ) * mu**y / LOOKUP_TABLE[ y ]

    out[thread_id] = weight[thread_id]*p2*p1_div_p3


"""
SIR module (phi distribution calculator)
"""
@cuda.jit(device=True)
def sirModule_tau(current, beta, omega, phi, phi_sub):
thread_id = cuda.threadIdx.x

    # calculate phi distribution and subtract from 1
    Z = ( 1 - ( current[ thread_id ] + beta ) ) / omega
    phi[ thread_id ] = 1.0 / 2.0 * ( 1.0 + math.erf( Z ) )
    phi_sub[ thread_id ] = 1 - phi[ thread_id ]

But these are the device functions. Should this be a source of problem?

And for the error, I get the following error message where line 207 in my code is where I call SIR module.

Traceback (most recent call last):
  File "CUDA_MonteCarlo_Testesr.py", line 214, in <module>
    main()
  File "CUDA_MonteCarlo_Testesr.py", line 207, in main
    omega, gamma, greater, equal, phi, phi_sub)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/compiler.py", line 703, in __call__
cfg(*args)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/compiler.py", line 483, in __call__
sharedmem=self.sharedmem)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/compiler.py", line 585, in _kernel_call
wb()
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/compiler.py", line 600, in <lambda>
retr.append(lambda: devary.copy_to_host(val, stream=stream))
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/devicearray.py", line 198, in copy_to_host
_driver.device_to_host(hostary, self, self.alloc_size, stream=stream)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 1597, in device_to_host
fn(host_pointer(dst), device_pointer(src), size, *varargs)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 288, in safe_cuda_api_call
self._check_error(fname, retcode)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 323, in _check_error
raise CudaAPIError(retcode, msg)
numba.cuda.cudadrv.driver.CudaAPIError: [715] Call to cuMemcpyDtoH results in UNKNOWN_CUDA_ERROR
Traceback (most recent call last):
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/utils.py", line 647, in _exitfunc
f()
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/utils.py", line 571, in __call__
return info.func(*info.args, **(info.kwargs or {}))
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 1099, in deref
mem.free()
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 1013, in free
self._finalizer()
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/utils.py", line 571, in __call__
return info.func(*info.args, **(info.kwargs or {}))
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 863, in core
deallocations.add_item(dtor, handle, size=bytesize)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 519, in add_item
self.clear()
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 530, in clear
dtor(handle)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 288, in safe_cuda_api_call
self._check_error(fname, retcode)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 323, in _check_error
raise CudaAPIError(retcode, msg)
numba.cuda.cudadrv.driver.CudaAPIError: [715] Call to cuMemFree results in UNKNOWN_CUDA_ERROR
4
  • 1
    Linux has a display timeout/watchdog mechanism, also, if the GPU you are running on is configured for X. If so, you may want to review this. This doesn't appear to be the whole code, so it's hard to speculate what else may be happening. You are supposed to provide a minimal reproducible example Commented Sep 2, 2017 at 20:56
  • @RobertCrovella, you can never stress that enough, many users provide a whole bunch of code as is, missing to mention the exact hardcoded line that generated the error. Commented Sep 2, 2017 at 21:20
  • Thanks @RobertCrovella. The Ubuntu is using xorg for display so I guess this wont matter. The rest of the codes are device functions as shown below but I highly doubt it could be a problem. Commented Sep 2, 2017 at 21:30
  • @RobertCrovella as suggested I did disable X (service lightdm stop) and then got some additional error msg saying "graphics sm warp exception on (gpc1 tpc 0) illegal instruction encoding." Do anybody have an idea what this should mean??? Commented Sep 2, 2017 at 22:08

2 Answers 2

2

I think there may be 2 problems.

  1. I'm not sure your use of LOOKUP_TABLE = cuda.to_device( outside of main is valid. I guess you are trying to create a device array, but I think you should be using numba.cuda.device_array() for that.

  2. You don't seem to be transferring the array y to the device properly for use.

When I make those two changes, the code seems to run without CUDA runtime error for me:

# cat t1.py
import numpy as np
import numba as nb
from timeit import default_timer as timer
# from matplotlib import pyplot as pt
import math
from numba import cuda
from numba.cuda.random import create_xoroshiro128p_states, xoroshiro128p_normal_float32

"""
Look up table for factorial
"""


"""
arr_sum - sum element in array
"""
@cuda.jit(device=True)
def arr_sum(arr):
    result = 0
    for i in range(arr.size):
        result = result + arr[i]

    return result


"""
dot - dot product of arr1 and arr2
"""
@cuda.jit(device=True)
def dot(arr1, arr2):
    result = 0
    for i in range(arr1.size):
        result = arr1[i]*arr2[i] + result

    return result


"""
arr_div - divide element in array
"""
@cuda.jit(device=True)
def arr_div(arr, div):
    thread_id = cuda.threadIdx.x

    arr[thread_id] = arr[thread_id]/div

"""
SIR module (sample_draw) - module drawing sample for time t (rampling model)
"""
@cuda.jit(device=True)
def sirModule_sample_draw(rng_states, inp, beta, omega, out):
    """Find a value less than 1 from nomral distribution"""
    thread_id = cuda.threadIdx.x

    # draw candidate sample from normal distribution and store
    # when less than 1
    while True:
        candidate = inp[thread_id] + beta + omega * xoroshiro128p_normal_float32(rng_states, thread_id)

        if candidate < 1:
            out[thread_id] = candidate
            break


"""
SIR module (weight calculation) - weight calculation method
"""
@cuda.jit(device=True)
def sirModule_weight(current, previous, weight, out, y, beta, omega, gamma, lt):
    thread_id = cuda.threadIdx.x
    PI = 3.14159265359

    # calculate the pdf/pmf of given state
    Z = ( current[thread_id] - ( previous[ thread_id ] + beta ) ) / omega
    p1_div_p3 = 1.0 / 2.0 * ( 1.0 + math.erf( Z ) )

    mu = math.log( 1 + math.exp( gamma * current[ thread_id ] ) )
    p2 =  math.exp( mu ) * mu**y /  lt[ y ]

    out[thread_id] = weight[thread_id]*p2*p1_div_p3


"""
SIR module (phi distribution calculator)
"""
@cuda.jit(device=True)
def sirModule_tau(current, beta, omega, phi, phi_sub):
    thread_id = cuda.threadIdx.x

    # calculate phi distribution and subtract from 1
    Z = ( 1 - ( current[ thread_id ] + beta ) ) / omega
    phi[ thread_id ] = 1.0 / 2.0 * ( 1.0 + math.erf( Z ) )
    phi_sub[ thread_id ] = 1 - phi[ thread_id ]

@cuda.jit
def SIR(rng_states, y, particles, weight, beta, omega, gamma,
    greater, equal, phi, phi_sub, lt):
    # thread/block index for accessing data
    tx = cuda.threadIdx.x # Thread id in a 1D block = particle index
    ty = cuda.blockIdx.x # Block id in a 1D grid = event index
    bw = cuda.blockDim.x # Block width, i.e. number of threads per block = particle number
    pos = tx + ty * bw # computed flattened index inside the array

    # get current event y_t
    y_current = y[ ty ]

    # get number of time steps
    tn = y_current.size

    # iterator over timestep
    for i in range(1, tn):
       # draw samples
        sirModule_sample_draw(rng_states, particles[ty][i-1], beta,
                                 omega, particles[ty][i])

        # get weight
        sirModule_weight(particles[ty][i], particles[ty][i-1], weight[ty][i-1], weight[ty][i], y_current[i], beta, omega, gamma, lt)

        # normalize weight
        weight_sum = arr_sum(weight[ty][i])
        arr_div(weight[ty][i], weight_sum)

        # calculate tau
        sirModule_tau(particles[ty][i], beta, omega, phi, phi_sub)

        # update greater and equal
        greater[ty][i] = greater[ty][i-1]*dot(weight[ty][i-1], phi)
        equal[ty][i] = greater[ty][i-1]*dot(weight[ty][i-1], phi_sub)

def main():

    beta = 1
    omega = 1
    gamma = 2

    pn = 100
    event_number = 50
    timestep = 100


    LOOKUP_TABLE = cuda.to_device(np.array([
    1, 1, 2, 6, 24, 120, 720, 5040, 40320,
    362880, 3628800, 39916800, 479001600,
    6227020800, 87178291200, 1307674368000,
    20922789888000, 355687428096000, 6402373705728000,
    121645100408832000, 2432902008176640000], dtype='int64'))



    hy = np.ones((event_number, timestep), dtype = np.uint32)
    print(hy.size)
    print(hy)
    y = cuda.to_device(hy)
    particles = cuda.to_device(np.zeros((event_number, timestep, pn), dtype = np.float32))
    weight = cuda.to_device(np.ones((event_number, timestep, pn), dtype = np.float32))
    greater = cuda.to_device(np.ones((event_number, timestep), dtype = np.float32))
    equal = cuda.to_device(np.ones((event_number, timestep), dtype = np.float32))

    phi = cuda.to_device(np.zeros(particles[0][0].size, dtype = np.float32))
    phi_sub = cuda.to_device(np.zeros(particles[0][0].size, dtype = np.float32))

    rng_states = create_xoroshiro128p_states(pn, seed=1)

    start = timer()
    SIR[event_number, pn](rng_states, y, particles, weight, beta, omega, gamma, greater, equal, phi, phi_sub, LOOKUP_TABLE)

    vectoradd_time = timer() - start

    print("sirModule1 took %f seconds" % vectoradd_time)
    cuda.synchronize()
if __name__ == '__main__':
    main()

# cuda-memcheck python t1.py
========= CUDA-MEMCHECK
5000
[[1 1 1 ..., 1 1 1]
 [1 1 1 ..., 1 1 1]
 [1 1 1 ..., 1 1 1]
 ...,
 [1 1 1 ..., 1 1 1]
 [1 1 1 ..., 1 1 1]
 [1 1 1 ..., 1 1 1]]
sirModule1 took 0.840958 seconds
========= ERROR SUMMARY: 0 errors
#
Sign up to request clarification or add additional context in comments.

2 Comments

Thanks, I didn't know that you cannot make a global variable for cuda memory. It works!!!
You can make a global variable for cuda memory. But your method to do that was not correct.
1

Solved! I am working on Ubuntu 16.04. When I installed Numba for the first time, numba.cuda functions worked fine. However later I encountered these kind of errors

raise CudaAPIError(retcode, msg)

CudaAPIError: Call to cuMemcpyHtoD results in CUDA_ERROR_LAUNCH_FAILED

These errors are encountered when you put your system on 'suspend'. In order to avoid such errors, restart your system or don't suspend.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.