3

Is it possible to estimate a repeated measures random effects model with a nested structure using plm() from the package?

I know it is possible with lmer() from the package. However, lmer() rely on a likelihood framework and I am curious to do it with plm().

Here's my minimal working example, inspired by this question. First some required packages and data,

# install.packages(c("plm", "lme4", "texreg", "mlmRev"), dependencies = TRUE)
data(egsingle, package = "mlmRev")

the data-set egsingle is a unbalanced panel consisting of 1721 school children, grouped in 60 schools, across five time points. For details see ?mlmRev::egsingle

Some light data management

dta <- egsingle
dta$Female <- with(dta, ifelse(female == 'Female', 1, 0))

Also, a snippet of the relevant data

dta[118:127,c('schoolid','childid','math','year','size','Female')]
#>     schoolid   childid   math year size Female
#> 118     2040 289970511 -1.830 -1.5  502      1
#> 119     2040 289970511 -1.185 -0.5  502      1
#> 120     2040 289970511  0.852  0.5  502      1
#> 121     2040 289970511  0.573  1.5  502      1
#> 122     2040 289970511  1.736  2.5  502      1
#> 123     2040 292772811 -3.144 -1.5  502      0
#> 124     2040 292772811 -2.097 -0.5  502      0
#> 125     2040 292772811 -0.316  0.5  502      0
#> 126     2040 293550291 -2.097 -1.5  502      0
#> 127     2040 293550291 -1.314 -0.5  502      0

Now, relying heavily on Robert Long's answer, this is how I estimate a repeated measures random effects model with a nested structure using lmer() from the package,

dta$year <- as.factor(dta$year)
require(lme4)
Model.1 <- lmer(math ~ Female + size + year + (1 | schoolid /childid), dta)
# summary(Model.1)

I looked in man page for plm() and it has an indexing command, index, but it only takes a single index and time, i.e., index = c("childid", "year"), ignoring the schoolid the model would look like this,

dta$year <- as.numeric(dta$year) 
library(plm)
Model.2 <- plm(math~Female+size+year, dta, index = c("childid", "year"), model="random")
# summary(Model.2)

To sum up the question

How can I, or is it even possible, to specify a repeated measures random effects model with a nested structure, like Model.1, using plm() from the package?

Below is the actual estimation results form the two models,

# require(texreg)
names(Model.2$coefficients) <- names(coefficients(Model.1)$schoolid) #ugly!
texreg::screenreg(list(Model.1, Model.2), digits = 3)  # pretty! 
#> ==============================================================
#>                                    Model 1        Model 2     
#> --------------------------------------------------------------
#> (Intercept)                           -2.693 ***    -2.671 ***
#>                                       (0.152)       (0.085)   
#> Female                                 0.008        -0.025    
#>                                       (0.042)       (0.046)   
#> size                                  -0.000        -0.000 ***
#>                                       (0.000)       (0.000)   
#> year-1.5                               0.866 ***     0.878 ***
#>                                       (0.059)       (0.059)   
#> year-0.5                               1.870 ***     1.882 ***
#>                                       (0.058)       (0.059)   
#> year0.5                                2.562 ***     2.575 ***
#>                                       (0.059)       (0.059)   
#> year1.5                                3.133 ***     3.149 ***
#>                                       (0.059)       (0.060)   
#> year2.5                                3.939 ***     3.956 ***
#>                                       (0.060)       (0.060)   
#> --------------------------------------------------------------
#> AIC                                16590.715                  
#> BIC                                16666.461                  
#> Log Likelihood                     -8284.357                  
#> Num. obs.                           7230          7230        
#> Num. groups: childid:schoolid       1721                      
#> Num. groups: schoolid                 60                      
#> Var: childid:schoolid (Intercept)      0.672                  
#> Var: schoolid (Intercept)              0.180                  
#> Var: Residual                          0.334                  
#> R^2                                                  0.004    
#> Adj. R^2                                             0.003    
#> ==============================================================
#> *** p < 0.001, ** p < 0.01, * p < 0.05    
1
  • 1
    plm implements a nested model as in Baltagi/Song/Jung (2001). Commented Mar 17, 2018 at 14:52

1 Answer 1

0

Based on Helix123's comment I wrote the following model specification for a repeated measures random effects model with a nested structure, in plm() from the package using Wallace and Hussain's (1969) method, i.e. random.method = "walhus", for estimation of the variance components,

p_dta <- pdata.frame(dta, index = c("childid", "year", "schoolid"))        
Model.3 <- plm(math ~ Female + size + year, data = p_dta, model = "random",
               effect = "nested", random.method = "walhus")

The results, seen in Model.3 below, is as close to identical, to the estimates in Model.1, as I could expect. Only the intercept is slightly different (see output below).

I wrote the above based on the example from Baltagi, Song and Jung (2001) provided in ?plm. In the Baltagi, Song and Jung (2001)-example the variance components are estimated first using Swamy and Arora (1972), i.e. random.method = "swar", and second with using Wallace and Hussain's (1969). Only the Nerlove (1971) transformation does not converge using the Song and Jung (2001)-data. Whereas it was only Wallace and Hussain's (1969)-method that could converge using the egsingle data-set.

Any authoritative references on this would be appreciated. I'll keep working at it.

names(Model.3$coefficients) <- names(coefficients(Model.1)$schoolid) 
texreg::screenreg(list(Model.1, Model.3), digits = 3,
                  custom.model.names = c('Model 1', 'Model 3')) 
#> ==============================================================
#>                                    Model 1        Model 3     
#> --------------------------------------------------------------
#> (Intercept)                           -2.693 ***    -2.697 ***
#>                                       (0.152)       (0.152)   
#> Female                                 0.008         0.008    
#>                                       (0.042)       (0.042)   
#> size                                  -0.000        -0.000    
#>                                       (0.000)       (0.000)   
#> year-1.5                               0.866 ***     0.866 ***
#>                                       (0.059)       (0.059)   
#> year-0.5                               1.870 ***     1.870 ***
#>                                       (0.058)       (0.058)   
#> year0.5                                2.562 ***     2.562 ***
#>                                       (0.059)       (0.059)   
#> year1.5                                3.133 ***     3.133 ***
#>                                       (0.059)       (0.059)   
#> year2.5                                3.939 ***     3.939 ***
#>                                       (0.060)       (0.060)   
#> --------------------------------------------------------------
#> AIC                                16590.715                  
#> BIC                                16666.461                  
#> Log Likelihood                     -8284.357                  
#> Num. obs.                           7230          7230        
#> Num. groups: childid:schoolid       1721                      
#> Num. groups: schoolid                 60                      
#> Var: childid:schoolid (Intercept)      0.672                  
#> Var: schoolid (Intercept)              0.180                  
#> Var: Residual                          0.334                  
#> R^2                                                  0.000    
#> Adj. R^2                                            -0.001    
#> ==============================================================
#> *** p < 0.001, ** p < 0.01, * p < 0.05#> 
Sign up to request clarification or add additional context in comments.

1 Comment

In the models with closed form solutions (the ANOVA type methods as Baltagi et al call them in the paper) we do not use the term "converge". By 'did not converge' do you mean the estimation errored, presumably by negative estimates for variance components? Nerlove's method is only defined for balanced panels (as per the original Nerlove paper) and the empirical example of Baltagi et al. is an unbalanced panel.

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.