0

I am looking at output from an ocean model, and from the output I would like to create a grid (x,y equivalent to lat,lon) of temperatures at the bottom of the water column, i.e., the deepest grid cells. Within the xarray dataset I have the maximum depths (see below, "Depth").

I can do this with a very slow loop, but was wondering if there was a way to avoid a loop, or at least part of the loop.

Here's what the data a code look like so far:

# load data as xarray
data_dir = 'run04'
ds1 = open_mdsdataset(data_dir,iters=np.arange(0,10001,5000),prefix=['U','V','W','S','T','Eta'])
ds1 = ds1.rename({'T':'Tt'}) # T doesn't work because it thinks its transpose

What ds1 looks:

<xarray.Dataset>
Dimensions:  (XC: 40, XG: 40, YC: 30, YG: 30, Z: 100, Zl: 100, Zp1: 101, Zu: 100, time: 3)
Coordinates:
  * XC       (XC) >f4 2500.0 7500.0 12500.0 17500.0 22500.0 27500.0 32500.0 ...
  * YC       (YC) >f4 2500.0 7500.0 12500.0 17500.0 22500.0 27500.0 32500.0 ...
  * XG       (XG) >f4 0.0 5000.0 10000.0 15000.0 20000.0 25000.0 30000.0 ...
  * YG       (YG) >f4 0.0 5000.0 10000.0 15000.0 20000.0 25000.0 30000.0 ...
  * Z        (Z) >f4 -7.0 -21.0 -35.0 -49.0 -63.0 -77.0 -91.0 -105.0 -119.0 ...
  * Zp1      (Zp1) >f4 0.0 -14.0 -28.0 -42.0 -56.0 -70.0 -84.0 -98.0 -112.0 ...
  * Zu       (Zu) >f4 -14.0 -28.0 -42.0 -56.0 -70.0 -84.0 -98.0 -112.0 ...
  * Zl       (Zl) >f4 0.0 -14.0 -28.0 -42.0 -56.0 -70.0 -84.0 -98.0 -112.0 ...
    rA       (YC, XC) >f4 dask.array<shape=(30, 40), chunksize=(30, 40)>
    dxG      (YG, XC) >f4 dask.array<shape=(30, 40), chunksize=(30, 40)>
    dyG      (YC, XG) >f4 dask.array<shape=(30, 40), chunksize=(30, 40)>
    Depth    (YC, XC) >f4 dask.array<shape=(30, 40), chunksize=(30, 40)>
    rAz      (YG, XG) >f4 dask.array<shape=(30, 40), chunksize=(30, 40)>
    dxC      (YC, XG) >f4 dask.array<shape=(30, 40), chunksize=(30, 40)>
    dyC      (YG, XC) >f4 dask.array<shape=(30, 40), chunksize=(30, 40)>
    rAw      (YC, XG) >f4 dask.array<shape=(30, 40), chunksize=(30, 40)>
    rAs      (YG, XC) >f4 dask.array<shape=(30, 40), chunksize=(30, 40)>
    drC      (Zp1) >f4 dask.array<shape=(101,), chunksize=(101,)>
    drF      (Z) >f4 dask.array<shape=(100,), chunksize=(100,)>
    PHrefC   (Z) >f4 dask.array<shape=(100,), chunksize=(100,)>
    PHrefF   (Zp1) >f4 dask.array<shape=(101,), chunksize=(101,)>
    hFacC    (Z, YC, XC) >f4 dask.array<shape=(100, 30, 40), chunksize=(100, 30, 40)>
    hFacW    (Z, YC, XG) >f4 dask.array<shape=(100, 30, 40), chunksize=(100, 30, 40)>
    hFacS    (Z, YG, XC) >f4 dask.array<shape=(100, 30, 40), chunksize=(100, 30, 40)>
    iter     (time) int64 dask.array<shape=(3,), chunksize=(1,)>
  * time     (time) int64 0 5000 10000
Data variables:
    Eta      (time, YC, XC) float32 dask.array<shape=(3, 30, 40), chunksize=(1, 30, 40)>
    V        (time, Z, YG, XC) float32 dask.array<shape=(3, 100, 30, 40), chunksize=(1, 100, 30, 40)>
    W        (time, Zl, YC, XC) float32 dask.array<shape=(3, 100, 30, 40), chunksize=(1, 100, 30, 40)>
    S        (time, Z, YC, XC) float32 dask.array<shape=(3, 100, 30, 40), chunksize=(1, 100, 30, 40)>
    U        (time, Z, YC, XG) float32 dask.array<shape=(3, 100, 30, 40), chunksize=(1, 100, 30, 40)>
    Tt       (time, Z, YC, XC) float32 dask.array<shape=(3, 100, 30, 40), chunksize=(1, 100, 30, 40)>

And the loop to get temperature values at the deepest cells:

# find the deepest wet cell at each gridpoint
# loop through timesteps 
t_at_bottom1 = np.zeros((ds1.time.size,ds1.YC.size,ds1.XC.size))
for ti in np.arange(0,ds1.time.size,1):
    # loop through x,y indices
    for yi in np.arange(0,ds1.YC.size,1):        
        for xi in np.arange(0,ds1.XC.size,1):
            # look for the grid cell closest to the bottom
            t_at_bottom1[ti,yi,xi] = ds1.Tt.sel(time=ds1.time[ti],Z=-ds1.Depth.values[yi,xi],YC=ds1.YC[yi],XC=ds1.XC[xi],method='nearest')

Thanks for your help.

2
  • Depth is not time dependent, so you should at least be able to get rid of this loop. Also if this is the actual size of the dataset using dask may be overkill. Did you try ds.load()? Commented Apr 3, 2018 at 16:42
  • That's presumably true @mathause . If I just loop through x and y using the first timestep, I could get the indices in the z-coord for the bottom cell of each column of cells. As you say, this won't change for the subsequent timesteps. However, I don't know how to use this output of z-coords as indices in the Temperature (Tt) array of subsequent timesteps. This is a coarse model run, so subsequent runs will have much larger datasets. Thanks for the tip though. Commented Apr 5, 2018 at 12:06

1 Answer 1

3

Have a look at vectorized indexing.

Simple example in 2D:

import xarray as xr
import numpy as np
data = np.arange(12).reshape(3, 4)
da = xr.DataArray(data, dims=['depth', 'x'],
                  coords=dict(depth=[0, 1, 2], x=[0, 1, 2, 3]))

da looks like

<xarray.DataArray (depth: 3, x: 4)>
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
Coordinates:
  * depth    (depth) int64 0 1 2
  * x        (x) int64 0 1 2 3

Now x-depended depths can be chosen by index with another dataarray:

sel = xr.DataArray([0, 1, 0, 2], dims=['x'])
da[sel]

This returns

<xarray.DataArray (x: 4)>
array([ 0,  5,  2, 11])
Coordinates:
    depth    (x) int64 0 1 0 2
  * x        (x) int64 0 1 2 3

This requires xarray version 0.10.0 or later.

Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.