5

I have the following dataframe which contains 2 columns:

1st column has column names

2nd Column has list of values.

+--------------------+--------------------+
|              Column|            Quantile|
+--------------------+--------------------+
|                rent|[4000.0, 4500.0, ...|
|     is_rent_changed|[0.0, 0.0, 0.0, 0...|
|               phone|[7.022372888E9, 7...|
|          Area_house|[1000.0, 1000.0, ...|
|       bedroom_count|[1.0, 1.0, 1.0, 1...|
|      bathroom_count|[1.0, 1.0, 1.0, 1...|
|    maintenance_cost|[0.0, 0.0, 0.0, 0...|
|            latitude|[12.8217605, 12.8...|
|            Max_rent|[9000.0, 10000.0,...|
|                Beds|[2.0, 2.0, 2.0, 2...|
|                Area|[1000.0, 1000.0, ...|
|            Avg_Rent|[3500.0, 4000.0, ...|
|      deposit_amount|[0.0, 0.0, 0.0, 0...|
|          commission|[0.0, 0.0, 0.0, 0...|
|        monthly_rent|[0.0, 0.0, 0.0, 0...|
|is_min_rent_guara...|[0.0, 0.0, 0.0, 0...|
|min_guarantee_amount|[0.0, 0.0, 0.0, 0...|
|min_guarantee_dur...|[1.0, 1.0, 1.0, 1...|
|        furnish_cost|[0.0, 0.0, 0.0, 0...|
|  owner_furnish_part|[0.0, 0.0, 0.0, 0...|
+--------------------+--------------------+

How do I split the second column into Multiple Columns Preserving the same dataset.

I can access the values using :

univar_df10.select("Column", univar_df10.Quantile[0],univar_df10.Quantile[1],univar_df10.Quantile[2]).show()

+--------------------+-------------+-------------+------------+
|              Column|  Quantile[0]|  Quantile[1]| Quantile[2]|
+--------------------+-------------+-------------+------------+
|                rent|       4000.0|       4500.0|      5000.0|
|     is_rent_changed|          0.0|          0.0|         0.0|
|               phone|7.022372888E9|7.042022842E9|7.07333021E9|
|          Area_house|       1000.0|       1000.0|      1000.0|
|       bedroom_count|          1.0|          1.0|         1.0|
|      bathroom_count|          1.0|          1.0|         1.0|
|    maintenance_cost|          0.0|          0.0|         0.0|
|            latitude|   12.8217605|   12.8490502|   12.863517|
|            Max_rent|       9000.0|      10000.0|     11500.0|
|                Beds|          2.0|          2.0|         2.0|
|                Area|       1000.0|       1000.0|      1000.0|
|            Avg_Rent|       3500.0|       4000.0|      4125.0|
|      deposit_amount|          0.0|          0.0|         0.0|
|          commission|          0.0|          0.0|         0.0|
|        monthly_rent|          0.0|          0.0|         0.0|
|is_min_rent_guara...|          0.0|          0.0|         0.0|
|min_guarantee_amount|          0.0|          0.0|         0.0|
|min_guarantee_dur...|          1.0|          1.0|         1.0|
|        furnish_cost|          0.0|          0.0|         0.0|
|  owner_furnish_part|          0.0|          0.0|         0.0|
+--------------------+-------------+-------------+------------+
only showing top 20 rows

I want my new dataframe to to split my 2nd column of lists into multiple columns like the above dataset. Thanks in advance.

2
  • 2
    so what is wrong with univar_df10.select()? Commented Apr 4, 2018 at 14:16
  • 1
    What is the question? You seem like you already have what you're looking for. new_df = univar_df10.select("Column", univar_df10.Quantile[0],univar_df10.Quantile[1],univar_df10.Quantile[2]) Commented Apr 4, 2018 at 14:59

2 Answers 2

10

Assuming (your question is flagged for closure as unclear what you're asking) that your issue is that the lists in your Quantile column are of some length, and so it is not convenient to build the respective command by hand, here is a solution using list addition and comprehension as an argument to select:

spark.version
# u'2.2.1'

# make some toy data
from pyspark.sql import Row
df = spark.createDataFrame([Row([0,45,63,0,0,0,0]),
                            Row([0,0,0,85,0,69,0]),
                            Row([0,89,56,0,0,0,0])],
                            ['features'])

df.show()
# result:
+-----------------------+
|features               |
+-----------------------+
|[0, 45, 63, 0, 0, 0, 0]|
|[0, 0, 0, 85, 0, 69, 0]|
|[0, 89, 56, 0, 0, 0, 0]|
+-----------------------+

# get the length of your lists, if you don't know it already (here is 7):
length = len(df.select('features').take(1)[0][0])
length
# 7

df.select([df.features] + [df.features[i] for i in range(length)]).show()
# result:
+--------------------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|            features|features[0]|features[1]|features[2]|features[3]|features[4]|features[5]|features[6]|  
+--------------------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|[0, 45, 63, 0, 0,...|          0|         45|         63|          0|          0|          0|          0| 
|[0, 0, 0, 85, 0, ...|          0|          0|          0|         85|          0|         69|          0|
|[0, 89, 56, 0, 0,...|          0|         89|         56|          0|          0|          0|          0|
+--------------------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+

So, in your case,

univar_df10.select([univar_df10.Column] + [univar_df10.Quantile[i] for i in range(length)])

should do the job, after you have calculated length as

length = len(univar_df10.select('Quantile').take(1)[0][0])
Sign up to request clarification or add additional context in comments.

3 Comments

how to do this in scala spark?
@jxn sorry, no idea on the Scala details
Hi @jxn In Scala we can achieve this t0o. I am Using for with yield to achieve this. Check my answer ,hope it helps.
2

Here's the pseudo code to do it in scala :-

import org.apache.spark.sql.functions.split 
import org.apache.spark.sql.functions.col

#Create column which you wanted to be .
val quantileColumn = Seq("quantile1","qunatile2","quantile3")

#Get the number of columns
val numberOfColums = quantileColumn.size

#Create a list of column
val columList = for (i <- 0 until numberOfColums ) yield split(col("Quantile"),",").getItem(i).alias(quantileColumn(i))

#Just perfom Select operation.
df.select(columList: _ *)

# If you want some columns to be added or dropped , use withColumn & dropp on df.

4 Comments

Please use below imports import org.apache.spark.sql.functions.split import org.apache.spark.sql.functions.col
Please do not use the comments for adding material - edit & update your post instead. Also, kindly avoid answering follow-up questions from the comments - the present thread is clearly about pyspark
Cool, I'll make a note of it.
Please add the imports to the answer!

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.