I'm building a buffer for network connections where you can explicitly allocate memory or you can supply it on your own via some sequential container(eg.:std::vector,std::array)these memory chunks are stored in a list what we use later for read/write operations. (the chunks are needed for handle multiple read/write requests) I have a question about the last part, I want to make a pointer to the container's data and then tell the container to not care about it's data anymore. So something like move semantics.
std::vector<int> v = {9,8,7,6,5,4,3,2,1,0};
std::vector<int> _v(std::move(v));
Where _v has all the values of v and v left in a safe state.
The problem is if I just make a pointer for v.data() after the lifetime of the container ends, the data pointed by the pointer releases with the container.
For example:
// I would use span to make sure It's a sequential container
// but for simplicity i use a raw pointer
// gsl::span<int> s;
int *p;
{
std::vector<int> v = {9,8,7,6,5,4,3,2,1,0};
// s = gsl::make_span(v);
p = v.data();
}
for(int i = 0; i < 10; ++i)
std::cout << p[i] << " ";
std::cout << std::endl;
Now p contains some memory trash and i would need the memory previously owned by the vector.
I also tried v.data() = nullptr but v.data() is rvalue so it's not possible to assign it. Do you have any suggestions, or is this possible?
edit.: To make it more clear what i'm trying to achieve:
class readbuf_type
{
struct item_type // representation of a chunk
{
uint8_t * const data;
size_t size;
inline item_type(size_t psize)
: size(psize)
, data(new uint8_t[psize])
{}
template <std::ptrdiff_t tExtent = gsl::dynamic_extent>
inline item_type(gsl::span<uint8_t,tExtent> s)
: size(s.size())
, data(s.data())
{}
inline ~item_type()
{ delete[] data; }
};
std::list<item_type> queue; // contains the memory
public:
inline size_t read(uint8_t *buffer, size_t size); // read from queue
inline size_t write(const uint8_t *buffer, size_t size); // write to queue
inline void *get_chunk(size_t size)
{
queue.emplace_back(size);
return queue.back().data;
}
template <std::ptrdiff_t tExtent = gsl::dynamic_extent>
inline void put_chunk(gsl::span<uint8_t,tExtent> arr)
{
queue.emplace_back(arr);
}
} readbuf;
I have the get_chunkfunction what basically just allocates memory with the size, and I have put_chunk what I'm struggling with, the reason i need this because before you can write to this queue you need to allocate memory and then copy all the elements from the buffer(vector,array) you're trying to write from to the queue.
Something like:
std::vector<int> v = {9,8,7,6,5,4,3,2,1,0};
// instead of this
readbuf.get_chunk(v.size);
readbuf.write(v.data(), v.size());
// we want this
readbuf.put_chunk({v});
Since we're developing for distributed systems memory is crucial and that's why we want to avoid the unnecessary allocation, copying.
ps.This is my first post, so sorry if i wasn't precise in the first place..
v.data();will point tov_.data();if you movevintov_.pafterv's lifetime ends is undefined behavior, though I don't doubt that this UB exhibited itself as producing the result you expect (appeared to work). This won't last, any change to your code or the context it runs in could change the behavior.structwith aunique_ptrto thestd::vectorwith the real data, and the "not caring any more" consists of nothing more than moving theunique_ptrsomewhere else.int *p;to be astd::vector<int>instead of aint*. Then usep = std::move(v);instead ofp = v.data();.