3

Is there a canonical way to compute the element-wise mean of a list of DataFrames with identical columns and indices?

The best way I can think of is

from functools import reduce

dfs = [df1, df2, df3, df4, df5]  
reduce(lambda x, y: x.add(y), dfs) / len(dfs)

1 Answer 1

4

Use concat with mean per index values:

df1 = pd.DataFrame({
         'C':[7,8,9],
         'D':[1,3,5],

})
df2 = pd.DataFrame({
         'C':[4,2,3],
         'D':[7,1,0],

})
df3 = pd.DataFrame({
         'C':[9,4,2],
         'D':[1,7,1],

})

from functools import reduce

dfs = [df1, df2, df3]  
df = reduce(lambda x, y: x.add(y), dfs) / len(dfs)
print (df)
          C         D
0  6.666667  3.000000
1  4.666667  3.666667
2  4.666667  2.000000

df = pd.concat(dfs).mean(level=0)
print (df)
          C         D
0  6.666667  3.000000
1  4.666667  3.666667
2  4.666667  2.000000
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.