1

I am working with a sales dataset that is in the CSV file. When I tried to load this dataset with the pandas read_csv method, I got an error UnicodeDecodeError: 'ascii' codec can't decode byte 0xae in position 16: ordinal not in range(128) I don't know how to solve this issue. I searched for it and got this link, still unable to my problem. I tried the following

import pandas as pd

sales=pd.read_csv("Superstore-Sales.csv")
sales.head(5)

Here is full error

---------------------------------------------------------------------------
UnicodeDecodeError                        Traceback (most recent call last)
pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._convert_tokens()

pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._convert_with_dtype()

pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._string_convert()

pandas/_libs/parsers.pyx in pandas._libs.parsers._string_box_utf8()

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xae in position 16: invalid start byte

During handling of the above exception, another exception occurred:

UnicodeDecodeError                        Traceback (most recent call last)
<ipython-input-50-c100e90b0440> in <module>
      1 import pandas as pd
      2 
----> 3 sales=pd.read_csv("Superstore-Sales.csv")
      4 sales.head(5)

D:\Anacoda\lib\site-packages\pandas\io\parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision)
    700                     skip_blank_lines=skip_blank_lines)
    701 
--> 702         return _read(filepath_or_buffer, kwds)
    703 
    704     parser_f.__name__ = name

D:\Anacoda\lib\site-packages\pandas\io\parsers.py in _read(filepath_or_buffer, kwds)
    433 
    434     try:
--> 435         data = parser.read(nrows)
    436     finally:
    437         parser.close()

D:\Anacoda\lib\site-packages\pandas\io\parsers.py in read(self, nrows)
   1137     def read(self, nrows=None):
   1138         nrows = _validate_integer('nrows', nrows)
-> 1139         ret = self._engine.read(nrows)
   1140 
   1141         # May alter columns / col_dict

D:\Anacoda\lib\site-packages\pandas\io\parsers.py in read(self, nrows)
   1993     def read(self, nrows=None):
   1994         try:
-> 1995             data = self._reader.read(nrows)
   1996         except StopIteration:
   1997             if self._first_chunk:

pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader.read()

pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._read_low_memory()

pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._read_rows()

pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._convert_column_data()

pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._convert_tokens()

pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._convert_with_dtype()

pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._string_convert()

pandas/_libs/parsers.pyx in pandas._libs.parsers._string_box_utf8()

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xae in position 16: invalid start byte
3

2 Answers 2

4

See if, sales=pd.read_csv("Superstore-Sales.csv", encoding='latin1') helps.

Sign up to request clarification or add additional context in comments.

Comments

-1

You can try this:

address = (r"C:\--------------------/Superstore-Sales.csv")
sales = pd.read_csv(address, encoding='latin1') 
sales.head()

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.