Consider a Pandas Dataframe like:
>>> import pandas as pd
>>> df = pd.DataFrame(dict(url=['http://url1.com', 'http://www.url1.com', 'http://www.url2.com','http://www.url3.com','http://www.url1.com']))
>>> df
Giving:
url
0 http://url1.com
1 http://www.url1.com
2 http://www.url2.com
3 http://www.url3.com
4 http://www.url1.com
I want to remove all rows containing url1.com and url2.com to obtain dataframe result like:
url
0 http://ww.url3.com
I do this
domainToCheck = ('url1.com', 'url2.com')
goodUrl = df['url'].apply(lambda x : any(domain in x for domain in domainToCheck))
But this give me no result.
Any idea how to solve the above problem?
Edit: Solution
import pandas as pd
import tldextract
df = pd.DataFrame(dict(url=['http://url1.com', 'http://www.url1.com','http://www.url2.com','http://www.url3.com','http://www.url1.com']))
domainToCheck = ['url1', 'url2']
s = df.url.map(lambda x : tldextract.extract(x).domain).isin(domainToCheck)
df = df[~s].reset_index(drop=True)