It depends what type of adjacency matrix you want, but here's an example with 0 for not connected and 1 for connected, rows are from and columns are to.
import numpy
edges = numpy.array([[0,1],[0,3],[1,2],[1,4],[2,5],[3,4],[3,5],[4,5]])
matrix = numpy.zeros((edges.max()+1, edges.max()+1))
matrix[edges[:,0], edges[:,1]] = 1
gives
array([[0., 1., 0., 1., 0., 0.],
[0., 0., 1., 0., 1., 0.],
[0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 1., 1.],
[0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 0.]])
If you want the connections to be bidirectional (ie. 0->1 also connects 1->0), then add another line of code to do the reverse connection.
import numpy
edges = numpy.array([[0,1],[0,3],[1,2],[1,4],[2,5],[3,4],[3,5],[4,5]])
matrix = numpy.zeros((edges.max()+1, edges.max()+1))
matrix[edges[:,0], edges[:,1]] = 1
matrix[edges[:,1], edges[:,0]] = 1
gives
array([[0., 1., 0., 1., 0., 0.],
[1., 0., 1., 0., 1., 0.],
[0., 1., 0., 0., 0., 1.],
[1., 0., 0., 0., 1., 1.],
[0., 1., 0., 1., 0., 1.],
[0., 0., 1., 1., 1., 0.]])