1

I have a pyspark dataframe like this:

+--------------------+--------------------+ | name| value| +--------------------+--------------------+ | null| null| | null| null| | null| null| | null| null| | null| null| | null| null| | null| null| | null| null| | null| null| | null| null| | id| null| | name| null| | age| null| | food| null| | null| 1| | null| Joe| | null| 47| | null| pizza| +--------------------+--------------------+

I want to remove the null values from each individual columns so the non-null data lines up.

The desired output is:

+--------------------+--------------------+ | name| value| +--------------------+--------------------+ | id| 1| | name| Joe| | age| 47| | food| pizza| +--------------------+--------------------+

I have tried removing nulls doing something like df.dropna(how='any'/'all') but and by separating out the columns and removing the nulls, but then it becomes difficult to join them back together.

1 Answer 1

1

try this- written in scala, but can be ported to pyspark with minimal change

   df.select(map_from_arrays(collect_list("name").as("name"),
      collect_list("value").as("value")).as("map"))
      .select(explode_outer($"map").as(Seq("name", "value")))
      .show(false)

    /**
      * +----+-----+
      * |name|value|
      * +----+-----+
      * |id  |1    |
      * |name|Joe  |
      * |age |47   |
      * |food|pizza|
      * +----+-----+
      */

Sign up to request clarification or add additional context in comments.

1 Comment

pyspark version of the same (df.select(F.map_from_arrays(F.collect_list("name"),F.collect_list("value")).alias("map")) .select(F.explode_outer("map").alias("name","value"))).show() , very nicely done, learned something new.. +1

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.