update_endpoint has been deprecated since AFAIK . To re-create the UpdateEndpoint functionality from this API itself and deploy a newly fit training job to an existing endpoint , we could do something like this (this example uses the sagemaker sklearn API):
from sagemaker.sklearn.estimator import SKLearn
sklearn_estimator = SKLearn(
entry_point=model.py,
instance_type=<instance_type>,
framework_version=<framework_version>,
role=<role>,
dependencies=[
<comma seperated names of files>
],
hyperparameters={
'key_1':value,
'key_2':value,
...
}
)
sklearn_estimator.fit()
sm_client = boto3.client('sagemaker')
# Create the model
sklearn_model = sklearn_estimator.create_model()
# Define an endpoint config and an endpoint
endpoint_config_name = 'endpoint-' + datetime.utcnow().strftime("%Y%m%d%H%m%s")
current_endpoint = endpoint_config_name
# From the Model : create the endpoint config and the endpoint
sklearn_model.deploy(
initial_instance_count=<count>,
instance_type=<instance_type>,
endpoint_name=current_endpoint
)
# Update the existing endpoint if it exists or create a new one
try:
sm_client.update_endpoint(
EndpointName=DESIRED_ENDPOINT_NAME, # The Prod/Existing Endpoint Name
EndpointConfigName=endpoint_config_name
)
except Exception as e:
try:
sm_client.create_endpoint(
EndpointName=DESIRED_ENDPOINT_NAME, # The Prod Endpoint name
EndpointConfigName=endpoint_config_name
)
except Exception as e:
logger.info(e)
sm_client.delete_endpoint(EndpointName=current_endpoint)