I have a Pandas Dataframe with thousands of columns. A snippet of the Pandas Dataframe is represented through the following:
import numpy as np
import pandas as pd
DataFrame1=pd.DataFrame([ ['A1X1' , 'J1', 'Q4', 'ND', 'J1'],
['A1X2' , 'X1', '01', 'Q2', 'JK'],
['A1X3' , 'R6', 'R6', '01', 'A5'],
['A1X4' , 'J1', 'R6', 'A5', 'B6']],
columns=['ID', 'SearchValue', 'Check 1', 'Check 2', 'Check 60000'])
DataFrame1.head(4)

I am trying to concisely determine whether 'SearchValue' is in 'Check1', 'Check2', and all the other columns up through 'Check 60000', and if it does exist, returning 'SearchValue' in a new 'FinalResult' column with a default to 'XX' when false.
I know I can utilize something like the below code to accomplish this task, but I would need to write the code out 60,000 times to cover all of the columns. This is simply unacceptable considering the amount of other 'SearchValue' columns that exist in the actual DataFrame that could push the program into millions of lines of code very quickly. Is there any better way to accomplish this?
Condition=[
DataFrame1['SearchValue'] .eq (DataFrame1 [ 'Check 1' ])
| DataFrame1['SearchValue'] .eq (DataFrame1 [ 'Check 2' ])
| DataFrame1['SearchValue'] .eq (DataFrame1 [ 'Check 60000' ])
]
Choice=[
DataFrame1['SearchValue']
]
DataFrame1['FinalResult']=numpy.select(Condition,Choice,default='XX')
DataFrame1.head(4)

Thanks in advance!