I have written function, which brings me tables with some statistics. here it is:
def demonstrate_best_results(x, features, clusters, indices,
cluster_means, differences, rel_differences):
for cluster, result in clusters.items():
print( )
print("cluster number : " + str(cluster+1),
"Number of el.", len(indices[cluster] ))
print("grand mean : ",
np.mean(x, axis=0))
print("cluster mean : ", cluster_means[cluster])
print("differences : ", differences[cluster])
print("rel. differences: ", rel_differences[cluster])
When I run it:
demonstrate_best_results(x=df, features=df.columns,
clusters=best_clusters_1,
indices=best_indices_1,
cluster_means=best_cluster_means_1,
differences=best_differences_1,
rel_differences=best_rel_differences_1)
I get this:
cluster number : 1 Number of el. 553
grand mean : [1.14817115e+08 3.85944444e+00 3.68888889e+01 6.59444444e+00]
cluster mean : [9.45822772e+07 4.16365280e+00 3.84918626e+01 3.67450271e+00]
differences : [-2.02348373e+07 3.04208358e-01 1.60297368e+00 -2.91994173e+00]
rel. differences: [-17.62353755 7.88218001 4.34541058 -44.27881312]
cluster number : 2 Number of el. 115
grand mean : [1.14817115e+08 3.85944444e+00 3.68888889e+01 6.59444444e+00]
cluster mean : [1.09844053e+08 4.03913043e+00 3.72000000e+01 2.56608696e+01]
differences : [-4.97306137e+06 1.79685990e-01 3.11111111e-01 1.90664251e+01]
rel. differences: [ -4.33128928 4.65574755 0.84337349 289.12860335]
cluster number : 3 Number of el. 83
grand mean : [1.14817115e+08 3.85944444e+00 3.68888889e+01 6.59444444e+00]
cluster mean : [9.18498693e+07 3.95783133e+00 2.42409639e+01 5.71084337e+00]
differences : [-2.29672452e+07 9.83868809e-02 -1.26479250e+01 -8.83601071e-01]
rel. differences: [-20.00332901 2.54924983 -34.28654377 -13.39917378]
cluster number : 4 Number of el. 127
grand mean : [1.14817115e+08 3.85944444e+00 3.68888889e+01 6.59444444e+00]
cluster mean : [7.23130098e+07 2.30708661e+00 3.79685039e+01 2.72440945e+00]
differences : [-4.25041047e+07 -1.55235783e+00 1.07961505e+00 -3.87003500e+00]
rel. differences: [-37.01896261 -40.22231315 2.9266673 -58.68629311]
cluster number : 5 Number of el. 22
grand mean : [1.14817115e+08 3.85944444e+00 3.68888889e+01 6.59444444e+00]
cluster mean : [9.81456648e+08 3.86363636e+00 3.64545455e+01 6.00000000e+00]
differences : [ 8.66639533e+08 4.19191919e-03 -4.34343434e-01 -5.94444444e-01]
rel. differences: [ 7.54799959e+02 1.08614575e-01 -1.17743702e+00 -9.01432182e+00]
However I need those tables to be converted into latex. So how to rewrote my function to get these 5 tables in form of pandas dataframe, so I can use to_latex() after?