I'm running a training code using pyhtorch and numpy.
This is the plot_example function:
def plot_example(low_res_folder, gen):
files=os.listdir(low_res_folder)
gen.eval()
for file in files:
image=Image.open("test_images/" + file)
with torch.no_grad():
upscaled_img=gen(
config1.both_transform(image=np.asarray(image))["image"]
.unsqueeze(0)
.to(config1.DEVICE)
)
save_image(upscaled_img * 0.5 + 0.5, f"saved/{file}")
gen.train()
The problem I have is that the unsqueeze attribute raises the error:
File "E:\Downloads\esrgan-tf2-masteren\modules\train1.py", line 58, in train_fn
plot_example("test_images/", gen)
File "E:\Downloads\esrgan-tf2-masteren\modules\utils1.py", line 46, in plot_example
config1.both_transform(image=np.asarray(image))["image"]
AttributeError: 'numpy.ndarray' object has no attribute 'unsqueeze'
The network is GAN network and gen() represents the Generator.
unsqueeze()is fortorch.tensorobject. It does not exist in Numpy. Here in your code you are trying to unsqueeze a numpynumpy.ndarray:image=np.asarray(image))["image"].unsqueeze(0)