I'm trying to colour columns "Col2", "Col3", "Col4", "Col5", "Col6" based on Col1 and return other columns without any colour.
Sample Data
from random import randint
x = [randint(0, 1) for p in range(0, 10)]
sample_dict = {"Col1": [randint(0, 1) for p in range(0, 10)],
"Col2": [randint(0, 1) for p in range(0, 10)],
"Col3": [randint(0, 1) for p in range(0, 10)],
"Col4": [randint(0, 1) for p in range(0, 10)],
"Col5": [randint(0, 1) for p in range(0, 10)],
"Col6": [randint(0, 1) for p in range(0, 10)]}
abcd = pd.DataFrame(np.random.randn(10, 4), columns=list('ABCD'))
sample = pd.DataFrame(sample_dict)
data = pd.concat([sample, abcd], axis=1)
Col1 Col2 Col3 Col4 Col5 Col6 A B C D
0 0 1 1 1 0 1 -1.358769 -0.310314 -1.056405 -0.567577
1 0 1 0 1 1 0 -0.539893 -0.139629 0.270759 -0.430564
2 1 1 1 0 1 0 -0.009886 0.023482 0.966884 0.612875
3 0 1 1 1 0 1 0.962987 0.191210 -0.228937 -0.338486
4 1 1 1 0 0 1 -0.867326 -0.461046 0.832390 0.956392
5 0 0 0 0 1 1 0.348276 0.711152 -1.016820 0.394526
6 1 1 1 1 0 0 0.622317 0.519261 -2.022494 -1.170836
7 0 1 0 0 1 0 0.033249 0.491181 -0.065532 0.936868
8 1 0 0 1 1 1 1.064310 -0.257726 -0.197229 0.348314
9 0 1 0 1 1 0 0.017713 -0.624656 -0.341611 -1.433317
So far, I'm able to colour it by
data["Col1", "Col2", "Col3", "Col4", "Col5", "Col6"].style.apply(lambda x: ["background-color: orange" if v != x.iloc[0] else "background_color: none" for v in x], axis=1)
but unable to return the other columns.
How to add colour to columns "Col2", "Col3", "Col4", "Col5", "Col6" based on Col1? Iss it possible to apply different color for each column in "Col2", "Col3", "Col4", "Col5", "Col6"?

