How to minmax normalize in the most efficient way, a XD-numpy array in "columns" of each 2D matrix of the array.
For example with a 3D-array :
a = np.array([[[ 0, 10],
[ 20, 30]],
[[ 40, 50],
[ 60, 70]],
[[ 80, 90],
[100, 110]]])
into the normalized array :
b = np.array([[[0., 0.],
[1., 1.]],
[[0., 0.],
[1., 1.]],
[[0., 0.],
[1., 1.]]])