I'd like to MinMax normalize the following 3D numpy array "at 2D-layer level" :
np.array([[[0, 1, 2],
[3, 4, 5],
[6, 7, 8]],
[[0, 1, 2],
[3, 4, 5],
[6, 7, 10]],
[[0, 1, 2],
[3, 4, 5],
[6, 7, 12]]])
to obtain :
np.array([[[0. , 0.1, 0.2],
[0.3, 0.4, 0.5],
[0.6, 0.7, 1. ]],
[[0. , 0.1, 0.2],
[0.3, 0.4, 0.5],
[0.6, 0.7, 1. ]],
[[0. , 0.08333333, 0.16666667],
[0.25 , 0.33333333, 0.41666667],
[0.5 , 0.58333333, 1. ]]])
any idea how if could be done without using loops ? Many thanks in advance !