You've already got some great answers here, but just to chime in (sorry if this is repetitive at all):
Task was introduced in the TPL before async/await existed. When async came along, the Task type was reused instead of creating a separate "Promise" type.
In the TPL, pretty much all tasks were Delegate Tasks - i.e., they wrap a delegate (code) which is executed on a TaskScheduler. It was also possible - though rare - to have Promise Tasks in the TPL, which were created by TaskCompletionSource<T>.
The higher-level TPL APIs (Parallel and PLINQ) hide the Delegate Tasks from you; they are higher-level abstractions that create multiple Delegate Tasks and execute them on multiple threads, complete with all the complexity of partitioning and work queue stealing and all that stuff.
However, the one drawback to the higher-level APIs is that you need to know how much work you are going to do before you start. It's not possible for, e.g., the processing of one data item to add another data item(s) back at the beginning of the parallel work. That's where Dynamic Parallelism comes in.
Dynamic Parallelism uses the Task type directly. There are many APIs on the Task type that were designed for Dynamic Parallelism and should be avoided in async code unless you really know what you're doing (i.e., either your name is Stephen Toub or you're writing a high-performance .NET runtime). These APIs include StartNew, ContinueWith, Wait, Result, WaitAll, WaitAny, Id, CurrentId, RunSynchronously, and parent/child tasks. And then there's the Task constructor itself and Start which should never be used in any code at all.
In the particular case of Wait, yes, it does block the thread. And that is not ideal (even in parallel programming), because it blocks a literal thread. However, the alternative may be worse.
Consider the case where task A reaches a point where it has to be sure task B completes before it continues. This is the general Dynamic Parallelism case, so assume no parent/child relationship.
The old-school way to avoid this kind of blocking is to split method A up into a continuation and use ContinueWith. That works fine, but it does complicate the code - rather considerably in the case of loops. You end up writing a state machine, essentially what async does for you. In modern code, you may be able to use await, but then that has its own dangers: parallel code does not work out of the box with async, and combining the two can be tricky.
So it really comes down to a tradeoff between code complexity vs runtime efficiency. And when you consider the following points, you'll see why blocking was common:
- Parallelism is normally done on Desktop applications; it's not common (or recommended) for web servers.
- Desktop machines tend to have plenty of threads to spare. I remember Mark Russinovich (long before he joined Microsoft) demoing how showing a File Open dialog on Windows spawned some crazy number of threads (over 20, IIRC). And yet the user wouldn't even notice 20 threads being spawned (and presumably blocked).
- Parallel code is difficult to maintain in the first place; Dynamic Parallelism using continuations is exceptionally difficult to maintain.
Given these points, it's pretty easy to see why a lot of parallel code blocks thread pool threads: the user experience is degraded by an unnoticeable amount, but the developer experience is enhanced significantly.