I use the following codes to produce to related graphics.
(*first code*)
gRecA = Graphics[{FaceForm[GrayLevel[1]],
EdgeForm[Directive[Thick, Black]],
Rectangle[{-12.5, 0}, {-2.5, 10}]}];
gRecB = Graphics[{FaceForm[GrayLevel[1]],
EdgeForm[Directive[Dotted, Black]], Rectangle[{0, 0}, {10, 10}]}];
gRecC = Graphics[{FaceForm[GrayLevel[0.8]],
EdgeForm[Directive[Thick, Black]],
Rectangle[{12.5, 0}, {22.5, 10}]}];
plusequalA =
Graphics[{Line[{{-1.5, 5}, {-0.5, 5}}],
Line[{{-1.0, 5.6}, {-1.0, 4.4}}], Line[{{-1.5, 5}, {-0.5, 5}}],
Line[{{10.5, 5.2}, {11.5, 5.2}}],
Line[{{10.5, 4.8}, {11.5, 4.8}}]}];
textA = Graphics[{Text[Style["pure matrix", 14], {-7.5, -2}],
Text[Style["fillers", 14], {5, -2}],
Text[Style["substitute matrix", 14], {17.5, -2}]}];
Show[{gRecA, gRecB, gRecC, plusequalA, textA}, PlotRange -> All,
PlotRangePadding -> 2, ImageSize -> Scaled[.4], Frame -> True]
(*second code*)
g2 = Graphics[{FaceForm[GrayLevel[0.9]],
EdgeForm[Directive[Thick, Black]], Rectangle[{0, 0}, {10, 10}]}];
g3a = Graphics[{FaceForm[GrayLevel[0.6]], EdgeForm[Black],
Disk[{11.3, 10.5 - 2}, 0.15]}];
g3b = Graphics[{FaceForm[GrayLevel[0.6]], EdgeForm[Black],
Disk[{12.7, 10.2 - 2}, 0.15]}];
g3c = Graphics[{FaceForm[GrayLevel[0.6]], EdgeForm[Black],
Disk[{12, 9.7 - 2}, 0.15]}];
g3d = Graphics[{FaceForm[GrayLevel[0.6]], EdgeForm[Black],
Disk[{13.5, 9.5 - 2}, 0.15]}];
g3e = Graphics[{FaceForm[GrayLevel[0.6]], EdgeForm[Black],
Disk[{13.5, 10.7 - 2}, 0.15]}];
g4 = Graphics[{FaceForm[GrayLevel[0.8]],
EdgeForm[Directive[Thick, Black]],
Rectangle[{11, 9 - 2}, {14, 11 - 2}]}];
g5 = Graphics[{Line[{{8, 8}, {11, 7}}], Line[{{8, 8}, {11, 9}}]}];
g6 = Graphics[{FaceForm[GrayLevel[0.6]], EdgeForm[Black],
Disk[{11.5, 6.05}, 0.25]}];
g7 = Graphics[Text[Style["Fillers", 14], {13, 6.}]];
Legended[Show[{g2, g4, g3a, g3b, g3c, g3d, g3e, g5, g6, g7},
ImageSize -> Scaled[.4], Frame -> True],
Placed[LineLegend[{Thick,
Dashed}, {Style["Bundles of carbon fibers", 14],
Style["Bundles of glass fibers", 14]}, LegendFunction -> "Frame",
LegendLayout -> "Column"], Bottom]]
which produce, respectively, the following outputs
As you see the square of the second graphic is bigger than those of the first graphic. So, (I do not know if I use the correct wording here) I want the square of the second graphic to match the scaling of the squares of the first one.


